计算机视觉
文章平均质量分 66
内容包括三维坐标变换、相机标定和图像识别相关算法
坚持奋斗的李洛克
这个作者很懒,什么都没留下…
展开
-
基于java的opencv开发和部署
1.下载安装OpenCVhttps://opencv.org/releases/选择合适的平台安装包下载,然后双击安装,也就是解压的过程。这里主要记录windows下的环境搭建,opencv-342版本。2.找到jar包1)在…\opencv\build\java路径下能找到opencv-xx.jar2)idea 新建工程,在Project Structure -> modules -> dependencies中添加jars or derectories 选择1)的jar包3)运原创 2021-04-13 22:36:19 · 2001 阅读 · 1 评论 -
opencv Mat元素访问和Mat矩阵初始化
*原创 2015-05-18 14:48:56 · 6520 阅读 · 0 评论 -
IplImage, CvMat, Mat 的关系以及相互转化
opencv中常见的与图像操作有关的数据容器有Mat,cvMat和IplImage,这三种类型都可以代表和显示图像,但是,Mat类型侧重于计算,数学性较高,openCV对Mat类型的计算也进行了优化。而CvMat和IplImage类型更侧重于“图像”,opencv对其中的图像操作(缩放、单通道提取、图像阈值操作等)进行了优化。在opencv2.0之前,opencv是完全用C实现的,但是,IplIma转载 2015-12-27 11:00:40 · 748 阅读 · 0 评论 -
java opencv byte[] 转Mat类型遇到的坑
先上测试代码 Mat mat = new Mat(1024,1024,CV_8UC1); byte[] arr = new byte[64]; Arrays.fill(arr,(byte)0xff); //实际需要覆盖多个小图像,这里为简化需求将左上角覆盖一白色方块 for(int i=0;i<64;i++){ mat.put(i,0,arr); } imwrite(原创 2022-02-09 21:34:04 · 3039 阅读 · 0 评论 -
栈实现种子区域生长法
栈实现种子区域生长法代码如下:#include "stdafx.h"#include #include "cv.h"#include "highgui.h"//#include //头文件里有栈顶指针,using namespace std;#define maxsize 5000 //typedef struct//保存种子像素 //可以学习下用结构原创 2014-06-12 11:40:06 · 2192 阅读 · 0 评论 -
最小二乘法
一、引入 在看文献中,经常遇到最小二乘法,之前学过,但不求甚解,今儿好好记录下来。 最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。二. 最小二乘法 我们以最简单原创 2016-03-15 20:44:17 · 1088 阅读 · 0 评论 -
直方图均衡化
直方图均衡化引例可以参考http://zh.wikipedia.org/wiki/%E7%9B%B4%E6%96%B9%E5%9B%BE%E5%9D%87%E8%A1%A1%E5%8C%96其中他的实现公式可以简化, ; 。在程序实现中可以不减去出现灰度值最少的数。直接 L*累加函数。 bMap[i] = (BYTE) (lTemp * 255 / lHeight / lWidth原创 2015-04-22 16:48:45 · 712 阅读 · 0 评论 -
Brief特征点描述
简介BRIEF是2010年在ECCV 的一篇名为《BRIEF:Binary Robust Independent Elementary Features》的文章提出的,BRIEF是对已检测到的特征点进行描述,它是一种二进制编码的描述子,摈弃了利用区域灰度直方图描述特征点的传统方法,大大的加快了特征描述符建立的速度,同时也极大的降低了特征匹配的时间,是一种非常快速,很有潜力的算法。原理介绍前人通过对大转载 2015-12-15 17:05:49 · 2827 阅读 · 0 评论 -
Hough 变换检测直线、圆
1. Hough变换检测直线记图像空间坐标系为X-Y,则图像空间中所有共线点的直线方程表示为: y=mx+c (1) 其中m为直线的斜率,c为截距,将公式(1)改写为: c=-xm+y (2) 可以将公式(2)理解为参数空间坐标系为M-C中的一条直线方程,其中斜率为-x,截距为y。 图1 图1(a)为图像空间,原创 2015-12-12 22:05:01 · 2783 阅读 · 0 评论 -
位图图像基础
一、图像的分类:根据图想记录方式的不同,分为模拟图像和数字图像。模拟图像是吐过某种物理量的强弱变化来记录图像各点的亮度信息。数字图像完全用数字来记录图像亮度信息。 二、屏幕分辨率:平时所说的1024*768,屏幕上每行像素为1024个,共768行。颜色表存储每个像素的颜色。24位真彩色位图没有颜色表。 三、计算机常显示的图像:二值图像,灰度图像,伪彩色和真彩色图像。1、灰度图像只有亮度信息,么有原创 2015-10-16 16:06:31 · 3804 阅读 · 0 评论 -
计算机视觉中的曲率尺度空间技术
看到一篇文章《计算机视觉中的曲率尺度空间技术: 基本概念与理论进展》——钟宝江,对于尺度空间的理解很有帮助,遂贴部分内容在此,如果涉及侵权,请告知,我会马上删除。1 引言尺度是计算机视觉与图象处理领域的一个重要概念。国际上有关尺度空间技术的研究大致分为如下两个分支:线性尺度空间技术转载 2015-10-14 11:45:54 · 3573 阅读 · 0 评论 -
SURF算法中的ransac算法
1.RANSAC 原理 就是首先随机抽取观测数据子集,我们假设视为这子集就是“内点”(局内点或者局内数据)。然后用这子集进行相关的拟合来计算模型参数(或者估计函数)。找到这模型(或者函数)以后,利用观测点(数据)进行是否正确,如果求出来的模型能够满足足够多的数据,我们视为很正确的数据。最后我们采纳。但是,如果不适合,也就是说求出来的模型(或者函数,也可以是模型参数)满足的数据点很少,我们就放弃,从原创 2015-10-20 17:47:37 · 6665 阅读 · 3 评论 -
SURF算法分析
SURF算法简介: SURF (Speeded Up Robust Features, 加速稳健特征) 是一个稳健的图像识别和描述算法,首先于2006年发表在ECCV大会上。这个算法可被用于计算机视觉任务,如物件识别和3D重构。他部分的灵感来自于 SIFT 算法。SURF标准的版本比SIFT要快数倍,并且其作者声称在不同图像变换方面比SIFT更加稳健。SURF使用海森矩阵(Hessian)的行列式原创 2015-10-21 14:41:02 · 8798 阅读 · 0 评论 -
相机标定基础
一. 什么是摄像机标定从二维图像中恢复物体的三维信息,必须要知道空间坐标系中的物体点同它在图像平面上像点之间的对应关系,而这个对应关系是由摄像机的成像几何模型所决定的,这些几何模型参数就是摄像机参数。在大多数情况下这些参数必须通过实验才能得到,这个过程被称为摄像机标定。 摄像机标定就是确定摄像机内部几何和光学特性(内部参数)以及摄像机坐标系相对于世界坐标系的三维位置和方向(外部参数)的过程。原创 2015-11-27 18:54:17 · 2710 阅读 · 0 评论 -
相机标定法-张正有
前言 此处“张正友标定”又称“张氏标定”,是指张正友教授于1998年提出的单平面棋盘格的摄像机标定方法。张氏标定法已经作为工具箱或封装好的函数被广泛应用。张氏标定的原文为“A Flexible New Technique forCamera Calibration”。此文中所提到的方法,为相机标定提供了很大便利,并且具有很高的精度。从此标定可以不需要特殊的标定物,只需要一张打印出来的棋盘格。So转载 2015-11-26 17:25:34 · 9288 阅读 · 2 评论 -
三维坐标旋转矩阵
1.三维坐标旋转矩阵的推导过程任何维的旋转可以表述为向量与合适尺寸的方阵的乘积。最终一个旋转等价于在另一个不同坐标系下对点位置的重新表述。 坐标系旋转角度θ则等同于将目标点围绕坐标原点反方向旋转同样的角度θ。 若以坐标系的三个坐标轴X、Y、Z分别作为旋转轴,则点实际上只在垂直坐标轴的平面上作二维旋转。假设三维坐标系(右手坐标系,拇指即指向X轴的正方向。伸出食指和中指,如右图所示,食指指向Y轴的正原创 2016-03-05 20:48:11 · 75741 阅读 · 6 评论 -
远心镜头成像模型
常见的镜头主要有 CCTV 镜头、专业摄影镜头和远心镜头。大部分的 CCTV 镜头、专业摄影镜头为变焦距镜头。 这里主要讨论普通光学镜头与远心镜头。1.普通光学镜头成像模型是小孔成像这中模型比较常见,大家比较熟悉。 可以转化成中心透视投影模型:成像坐标系与相机坐标系的关系: 写成齐次坐标形式: 更多内容点击2.远心镜头远心镜头相机模型为正交投影,orthographic proj原创 2016-05-11 16:40:53 · 7357 阅读 · 0 评论 -
Homography单应性矩阵程序实现
单应性矩阵重要应用在求解两幅图像的映射关系,或者图像坐标与世界坐标的映射关系。 这里主要在张正有相机标定法的基础上,求解H。 具体理论为请点:相机标定法-张正有Opencv程序实现 std::vector<Point2f> pt1(4); std::vector<Point2f> pt2(4); pt1[0] = Point2f(0,0) ;原创 2016-05-28 20:05:38 · 6327 阅读 · 0 评论