着色近似算法——韦尔奇-鲍威尔(Welch-Powell)点着色算法

韦尔奇-鲍威尔(Welch-Powell)点着色算法

  1. 按照点的度数非严格递减的方式进行排序。
  2. 对第一个点着色,并找到与之不相邻的、在序列中与它最近的点,着相同的颜色。依次类推,对序列中与以着色顶点不相邻的点按照此步骤依次进行下去。
  3. 删去第一次着色的点,对剩余的顶点采取步骤2的方法继续着色。
  4. 直到所有顶点已着色,算法结束。

韦尔奇-鲍威尔(Welch-Powell)点着色算法并不总能得到最小点着色数目。比如二部图中最小点着色是2,但是此算法可能会得到大于2的结果。

Reference:Duo L., 2018.离散数学及应用.2nd.Beijing: Tsinghua University.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值