高斯混合PHD滤波器 论文脉络梳理(单目标贝叶斯,多目标贝叶斯,PHD,边缘分布多目标贝叶斯)

本文介绍了高斯混合概率假设密度(PHD)滤波器,用于解决数据关联不确定性、检测不确定性和噪声环境下的多目标跟踪问题。从单目标贝叶斯滤波器到多目标贝叶斯滤波器,再到PHD滤波器,重点阐述了线性高斯模型和非线性模型的PHD递推公式。通过线性高斯模型获得了解析解,减少了计算复杂性。最后讨论了高斯分量的剪枝方法和非线性情况下的应用。
摘要由CSDN通过智能技术生成

摘要:在数据关联不确定,检测不确定和噪声的环境下,传感器检测不到所有目标,并且因为杂波的存在,还会出现虚假测量。为了联合估计时变目标数及其状态,传统的方法是将目标和观测进行精确的关联。比如:NN,MHT,JPDA,PMHT等。但由于组合性质,其计算量很大。而现在的解决方法是对称测量方程(symmetric measurement equations)随机有限集RFS(random finit sets)。RFS主要将目标和观测分别作为一个随机有限集,再利用线性高斯模型来求得PHD递归方程的解,从而得到其后验强度。最后,论文使用扩展卡尔曼滤波器 EK filters(the extended Kalman filters)无迹卡尔曼滤波器 UK filters(the unscented Kalman filters)将算法拓展到非线性目标运动。


        本篇博客将分为四部分来讲解。第一部分为问题制定;第二部分为线性高斯模型的PHD递推;第三部分非线性高斯模型的PHD递推;第四部分为总结与展望。

一、提出问题

          这部分提出了一个问题,在由单目标贝叶斯滤波器到多目标贝叶斯滤波器再到PHD滤波器的推理中,最后,如何解决PHD递归方程无封闭解的问题,即:数值积分有维数之灾。

 1.  单目标贝叶斯滤波器

      x_{k-1}\rightarrow x_{k}    转移概率密度:

      x_{k}\rightarrow z_{k}        似然函数:

      z_{1:k}=\left ( z_{1},...,z_{k} \right )\rightarrow x_{k}     后验概率密度: 

 

单目标贝叶斯递归方程:

        k时刻先验密度:   

                

        k时刻后验密度:   

             

 

k时刻目标状态获得方法:一是最小均方误差MMSE(the minimum mean squared error criterion),二是最大后验准则MAP(the maximum a posteriori criterion)

2.基于RFS的多目标贝叶斯滤波器

     状态集:

     观测集:

    其中,M\left ( k \right )为k时刻目标个数,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值