Watching the Kangaroo
题意:给出n段区间(l,r),给出m给位置x,求对于所有(l <= x <= r)区间,求min(x-l,r-x)的最大值。
解法:二分加前缀。对于一个区间,分成两半排序(考虑奇偶),对于x属于左半段的,二分出一个最接近x的右边,假设位置为p,那么在p~n都满足右边大于等于x,那么只有找到p~n左边值的最小值min,答案就是x-min。同理右边
#include <iostream>
using namespace std;
#include <stdio.h>
const int maxn = 200010;
int lef[maxn][2], righ[maxn][2], prelef[maxn], prerigh[maxn];
int n, m, x, y, l, r, mid, ans;
int max(int x, int y) {
if (x > y) return x;
return y;
}
int min(int x, int y) {
if (x < y) return x;
return y;
}
void swap(int &x, int &y) {
int temp = x;
x = y;
y = temp;
}
void sortlef(int i, int j) {
int p = i, q = j;
int mid1 = lef[(p+q)/2][1];
int mid2 = lef[(p+q)/2][0];
while (p <= q) {
while (lef[p][1] < mid1 || (lef[p][1] == mid1 && lef[p][0] < mid2)) p++;
while (lef[q][1] > mid1 || (lef[q][1] == mid1 && lef[q][0] > mid2)) q--;
if (p <= q) {
for (int k = 0; k <= 1; k++) {
int temp = lef[p][k];
lef[p][k] = lef[q][k];
lef[q][k] = temp;
}
p++; q--;
}
}
if (i < q) sortlef(i, q);
if (p < j) sortlef(p, j);
}
void sortrigh(int i, int j) {
int p = i, q = j;
int mid1 = righ[(p+q)/2][0];
int mid2 = righ[(p+q)/2][1];
while (p <= q) {
while (righ[p][0] < mid1 || (righ[p][0] == mid1 && righ[p][1] < mid2)) p++;
while (righ[q][0] > mid1 || (righ[q][0] == mid1 && righ[q][1] > mid2)) q--;
if (p <= q) {
for (int k = 0; k <= 1; k++) {
int temp = righ[p][k];
righ[p][k] = righ[q][k];
righ[q][k] = temp;
}
p++; q--;
}
}
if (i < q) sortrigh(i, q);
if (p < j) sortrigh(p, j);
}
int main() {
int tt, cases = 0;
scanf("%d", &tt);
while (++cases <= tt) {
scanf("%d %d", &n, &m);
for (int i = 1; i <= n; i++) {
scanf("%d %d", &x, &y);
if (x > y) swap(x, y);
mid = (x+y)/2;
lef[i][0] = x;
lef[i][1] = mid;
righ[i][0] = y-(mid-x);
righ[i][1] = y;
}
sortlef(1, n);
sortrigh(1, n);
prelef[n] = lef[n][0];
for (int i = n-1; i >= 1; i--) prelef[i] = min(prelef[i+1], lef[i][0]);
prerigh[1] = righ[1][1];
for (int i = 2; i <= n; i++) prerigh[i] = max(prerigh[i-1], righ[i][1]);
printf("Case %d:\n", cases);
for (int q = 1; q <= m; q++) {
scanf("%d", &x);
l = 1; r = n;
ans = 0;
while (l <= r) {
mid = (l+r)/2;
if (lef[mid][1] >= x) {
ans = max(ans, x-prelef[mid]);
r = mid-1;
} else l = mid+1;
}
l = 1; r = n;
while (l <= r) {
mid = (l+r)/2;
if (righ[mid][0] <= x) {
ans = max(ans, prerigh[mid]-x);
l = mid+1;
} else r = mid-1;
}
cout << ans << endl;
}
}
}