OpenAi Q* (Q Star)项目入门介绍

本文介绍了OpenAI的Q*(Q Star)项目,它是Q-learning的一个高级迭代,可能结合了深度学习。文章通过与A*搜索算法的对比,解释了Q-learning的基本原理,强调了Q*在动态学习、交互式学习和决策优化方面的优势。此外,还探讨了Q*与谷歌的Gemini项目在语言模型和决策策略上的相似性和差异。

为初学者解释 Open Ai 的 Q*(Q Star)

Q* 的两个可能来源。

1)Q 可能是指 "Q-learning",这是一种用于强化学习的机器学习算法。

  • Q 名称的由来*:把 "Q*"想象成超级智能机器人的昵称。

  • Q 的意思是这个机器人非常善于做决定。

  • 它从经验中学习,就像你从玩电子游戏中学习一样。

  • 玩得越多,就越能找出获胜的方法。

 

2) 来自 A* 搜索

A* 搜索算法是一种寻路和图遍历算法,在计算机科学中被广泛用于解决各种问题,尤其是在游戏和人工智能中用于寻找两点之间的最短路径。

  • 想象一下,你身处迷宫之中,需要找到最快的出路。

  • 计算机科学中有一种经典方法,有点像一组指令,可以帮助找到迷宫中的最短路径。

  • 这就是A*搜索。现在,如果我们将这种方法与深度学习(一种让计算机从经验中学习和改进的方法,就像你在尝试了几次之后,会学到更好的方法)相结合,我们就能得到一个非常智能的系统。

  • 这个系统不仅仅能在迷宫中找到最短的路径,它还能通过找到最佳解决方案来解决现实世界中更棘手的问题,就像你如何找出解决难题或游戏的最佳方法一样。

 

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构与权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络与滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度与鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析与仿真验证相结合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数据与算法架构提升之路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值