近年来,AI模型的自我改进能力成为研究热点。传统AI依赖海量数据和监督学习,但在复杂推理任务(如数学竞赛题)中常常受限。DeepSeek-R1的成功发布点燃了全球复现热潮,HuggingFace的Open R1和UC伯克利的DeepScaleR等项目通过合成推理轨迹和强化学习(RL),让AI从“模仿”逐步走向“思考”。本文将结合实验数据和技术细节,深入解析这些突破性方法,并探讨上海交大LIMO项目的启示,帮助你理解AI自我改进的奥秘。
背景:AI自我改进的挑战与机遇
传统AI模型在处理复杂推理任务时,往往因缺乏自我纠错和动态调整能力而表现不佳。以数学竞赛题为例,模型可能生成看似合理的答案,却无法验证其正确性。DeepSeek-R1的成功表明,通过精心设计的训练数据和策略,AI可以学会自我改进,在高难度任务中大幅提升性能。这一突破激发了全球团队的热情,Open R1和DeepScaleR等项目应运而生,目标是通过合成高质量数据和分阶段训练,释放模型的推理潜能。
1、Open R1:分三步复现DeepSeek-R1
Open R1由HuggingFace发起,旨在复现DeepSeek-R1的成功。其训练流程分为三个步骤,逐步提升模型性能。
1.1、生成高质量蒸馏数据
-
数据来源