在线合成车牌照片【模拟车牌,用于车牌识别项目测试】

1、服务发布地址:

http://new.hdsxsc.com:10086/server.php?cphm=冀DSX888&cpys=0

2、传参说明:

cphm:车牌号码【仅限合规的车牌号码规则】
cpys:车牌颜色: 0=蓝色,1=黄色,2=白色,3=黑色,4=纯绿,6=黄绿
double:是否双层:0=单层 1=双层 【默认单层,仅白色和黄色支持双层车牌】

3、调用效果示例

3.1:蓝牌

http://new.hdsxsc.com:10086/server.php?cphm=冀DSX888&cpys=0
在这里插入图片描述

3.2:黄牌【单层】
http://new.hdsxsc.com:10086/server.php?cphm=冀DSX888&cpys=1
在这里插入图片描述

3.3:黄牌【双层】
http://new.hdsxsc.com:10086/server.php?cphm=冀DSX888&cpys=1&double=1
在这里插入图片描述
3.4 纯绿
http://new.hdsxsc.com:10086/server.php?cphm=冀DDS8888&cpys=4
在这里插入图片描述

3.5 黄绿
http://new.hdsxsc.com:10086/server.php?cphm=冀D88888D&cpys=6
在这里插入图片描述

项目库引用:

中国车牌模拟生成器【Python】
https://gitee.com/leijd/chinese_license_plate_generator

项目依赖安装:
./pip install -U opencv-python -i https://pypi.tuna.tsinghua.edu.cn/simple
./pip install -U numpy -i https://pypi.tuna.tsinghua.edu.cn/simple
./pip install -U tqdm -i https://pypi.tuna.tsinghua.edu.cn/simple
./pip install -U flask -i https://pypi.tuna.tsinghua.edu.cn/simple

服务页面代码:

#!/usr/bin/python3
#coding=utf-8
import cv2, os
import argparse
from generate_multi_plate import MultiPlateGenerator
from flask import Flask,request
import base64
import re

app = Flask(__name__)

@app.route("/")#路由:首页
def hello():
    return {'message':'wellcome to chinese_license_plate_generator api server!'}

@app.route('/server.php',methods=['POST','GET'])#路由/whatever_by_key.php, 接收方法:get,post 都行
def plate_special():
    plate_number = request.values.get('cphm')
    bg_color = request.values.get('cpys')
    double = request.values.get('double')
    
    if(bg_color=='0'):
        bg_color='blue'
    if(bg_color=='1'):
        bg_color='yellow'
    if(bg_color=='4'):
        bg_color='green_car'
    if(bg_color=='6'):
        bg_color='green_truck'
        
    if(double==None):
        double=False
    if(double=='0'):
        double=False
    if(double=='1'):
        double=True
    #按正则表达式,判断, 纠正车牌号颜色
    regex_0_1 = re.compile(r"[京津沪渝冀豫云辽黑湘皖鲁新苏浙赣鄂桂甘晋蒙陕吉闽贵粤青藏川宁琼]{1}[A-Z]{1}[A-HJ-NP-Z0-9]{5}$");                 #普通汽车 蓝/黄
    regex_4 = re.compile(r"[京津沪渝冀豫云辽黑湘皖鲁新苏浙赣鄂桂甘晋蒙陕吉闽贵粤青藏川宁琼]{1}[A-Z]{1}[DABCEFGHJK]{1}[A-HJ-NP-Z0-9]{1}[0-9]{4}$");    #新能源 小型车 纯绿
    regex_6 = re.compile(r"[京津沪渝冀豫云辽黑湘皖鲁新苏浙赣鄂桂甘晋蒙陕吉闽贵粤青藏川宁琼]{1}[A-Z]{1}[0-9]{5}[DABCEFGHJK]{1}$");                     #新能源 大型车 黄绿

    if(regex_4.match(plate_number)!=None):
        bg_color='green_car'

    if(regex_6.match(plate_number)!=None):
        bg_color='green_truck'
        
    if(not(regex_0_1.match(plate_number)!=None or regex_4.match(plate_number)!=None or regex_6.match(plate_number)!=None)):
        return '<img src="号码规则无效"></img>'

    generator = MultiPlateGenerator('plate_model', 'font_model')
    img = generator.generate_plate_special(plate_number, bg_color, double)
    image_code = str(base64.b64encode(cv2.imencode('.jpg', img)[1]))[2:-1]
    return '<img src="data:image/jpeg;base64,'+image_code+'"></img>'

if __name__ == "__main__":
    app.run(host='0.0.0.0',port=10086)


感谢网友反馈,更新新能源车牌 正则表达式

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

车牌识别技术是计算机视觉领域中的一个重要应用,它主要用于自动识别车辆的唯一标识——车牌号码。在本项目中,"模型车牌生成器.zip" 提供了一种工具,能够生成模拟车牌图像,这对于训练车牌识别模型至关重要。 我们要理解车牌识别的基本流程。一般来说,它包括以下几个步骤: 1. 图像预处理:获取到的原始图像可能存在光照不均、角度倾斜、车牌区域小等问题,因此需要先进行图像预处理,如灰度化、直方图均衡化、二值化、边缘检测等,以便突出车牌特征。 2. 特征提取:通过如霍夫变换、模板匹配、边缘检测等方法,定位出车牌的精确位置。此外,还需要对车牌上的字符进行分割,每个字符都要独立出来,这通常涉及到连通组件分析或投影分析。 3. 字符识别:对每个单独的字符进行识别,这一步可以采用传统的机器学习算法(如SVM、决策树)或深度学习模型(如卷积神经网络CNN)。训练数据的质量直接影响模型的性能,这就需要大量的真实车牌图像,但获取这些数据可能面临隐私问题。 4. 模型训练:模型车牌生成器的作用就在于此。它能生成各种随机的车牌号码图像,模拟真实世界的多样性,包括不同的颜色、字体、背景噪声等,为模型提供丰富的训练数据。这大大降低了获取真实数据的难度和成本,同时保护了个人隐私。 5. 模型优化与测试:通过不断调整模型参数,优化识别性能,然后在验证集和测试集上评估模型的准确性和鲁棒性,确保在实际应用中能稳定工作。 6. 实时应用:在满足识别精度要求后,将训练好的模型部署到实际系统中,如交通监控摄像头、停车场入口等,实现车牌的实时识别。 在"模型车牌生成器"的压缩包中,包含的工具可能是一个软件或者代码库,用于生成这些模拟车牌图像。用户可以根据需求设置车牌的颜色、形状、字体样式、噪声级别等参数,生成各种定制化的训练样本。在训练过程中,通过不断的迭代,模型会逐渐学会从各种复杂的图像中准确识别车牌和字符。 总结来说,"模型车牌生成器"是车牌识别模型训练过程中的关键工具,它能帮助开发者创建大量的合成车牌图像,以提升模型的识别能力。通过使用这样的生成器,可以有效地提高训练效率,降低实际操作中的技术门槛,并最终实现高精度的车牌自动识别系统
### DeepSeek API 调用方法 对于希望利用大型语言模型构建服务的应用开发者而言,了解并掌握DeepSeek API的调用方法至关重要。进入官网完成账户注册后,通过API开放平台获取专属API Key是第一步[^1]。 #### 获取API Key - 注册账号于官方站点:DeepSeek | 深度求索。 - 导航至API开放平台页面。 - 在左侧菜单选择API Keys选项卡。 - 创建新的API Key用于后续请求认证。 #### Python示例代码 一旦拥有了有效的API Key,就可以借助编程语言如Python发起HTTP POST请求来交互数据: ```python import requests url = "https://api.deepseek.com/v1/chat/completions" headers = { 'Content-Type': 'application/json', 'Authorization': 'Bearer YOUR_API_KEY' } data = { "messages": [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Tell me about the weather today"}, {"role": "assistant", "content": ""} ], "stream": False, } response = requests.post(url, headers=headers, json=data) if response.status_code == 200: result = response.json() print(result['choices'][0]['message']['content']) else: print(f"Error {response.status_code}: {response.text}") ``` 此段程序展示了如何发送消息给AI聊天接口,并接收返回的结果。注意替换`YOUR_API_KEY`为实际取得的关键字字符串[^2]。 #### Java环境下的实现方案 除了Python之外,Java也是一种流行的选择。为了简化集成过程,可以考虑采用预编译好的库或工具包,比如Ollama项目提供了便捷的方式来进行安装配置以及与DeepSeek的大规模语言模型互动[^3]。
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lzl640

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值