【数据结构与算法】 Floyd算法

核心思想:

 通过Floyd计算图G=(V,E)中各个顶点的最短路径时,需要引入一个矩阵S,矩阵S中的元素a[i][j]表示顶点i(第i个顶点)到顶点j(第j个顶点)的距离。假设图G中顶点个数为N,则需要对矩阵S进行N次更新。 初始时,矩阵S中顶点a[i][j]的距离为顶点i到顶点j的权值;如果i和j不相邻,则a[i][j]=∞。接下来开始,对矩阵S进行N次更新。第1次更新时,如果"a[i][j]的距离" > "a[i][0]+a[0][j]"(a[i][0]+a[0][j]表示"i与j之间经过第1个顶点的距离"),则更新a[i][j]为"a[i][0]+a[0][j]"。同理,第k次更新时,如果"a[i][j]的距离" > "a[i][k]+a[k][j]",则更新a[i][j]为"a[i][k]+a[k][j]"。更新N次之后,操作完成!


过程图解:


代码:

package com.smart.reflect;


import java.io.IOException;
import java.util.Scanner;


public class MatrixUDG {

    private int mEdgNum;        // 边的数量
    private char[] mVexs;       // 顶点集合
    private int[][] mMatrix;    // 邻接矩阵
    private static final int INF = Integer.MAX_VALUE;   // 最大值

    /*
     * 创建图(自己输入数据)
     */
    public MatrixUDG() {

        // 输入"顶点数"和"边数"
        System.out.printf("input vertex number: ");
        int vlen = readInt();
        System.out.printf("input edge number: ");
        int elen = readInt();
        if (vlen < 1 || elen < 1 || (elen > (vlen * (vlen - 1)))) {
            System.out.printf("input error: invalid parameters!\n");
            return;
        }

        // 初始化"顶点"
        mVexs = new char[vlen];
        for (int i = 0; i < vlen; i++) {
            System.out.printf("vertex(%d): ", i);
            mVexs[i] = readChar();
        }

        // 1. 初始化"边"的权值
        mEdgNum = elen;
        mMatrix = new int[vlen][vlen];
        for (int i = 0; i < vlen; i++) {
            for (int j = 0; j < vlen; j++) {
                if (i == j)
                    mMatrix[i][j] = 0;
                else
                    mMatrix[i][j] = INF;
            }
        }

        // 2. 初始化"边"的权值: 根据用户的输入进行初始化
        for (int i = 0; i < elen; i++) {
            // 读取边的起始顶点,结束顶点,权值
            System.out.printf("edge(%d):", i);
            char c1 = readChar();       // 读取"起始顶点"
            char c2 = readChar();       // 读取"结束顶点"
            int weight = readInt();     // 读取"权值"

            int p1 = getPosition(c1);
            int p2 = getPosition(c2);
            if (p1 == -1 || p2 == -1) {
                System.out.printf("input error: invalid edge!\n");
                return;
            }

            //无向图可以当成是两条边的有向图
            mMatrix[p1][p2] = weight;
            mMatrix[p2][p1] = weight;
        }
    }

    /*
     * 创建图(用已提供的矩阵)
     *
     * 参数说明:
     *     vexs  -- 顶点数组
     *     matrix-- 矩阵(数据)
     */
    public MatrixUDG(char[] vexs, int[][] matrix) {

        // 初始化"顶点数"和"边数"
        int vlen = vexs.length;

        // 初始化"顶点"
        mVexs = new char[vlen];
        for (int i = 0; i < vlen; i++)
            mVexs[i] = vexs[i];

        // 初始化"边"
        mMatrix = new int[vlen][vlen];
        for (int i = 0; i < vlen; i++)
            for (int j = 0; j < vlen; j++)
                mMatrix[i][j] = matrix[i][j];

        // 统计"边"---这里针对的是无向图
        mEdgNum = 0;
        for (int i = 0; i < vlen; i++)
            for (int j = i + 1; j < vlen; j++)
                if (mMatrix[i][j] != INF)
                    mEdgNum++;
    }

    /*
     * 返回字符在数组中的位置
     */
    private int getPosition(char ch) {
        for (int i = 0; i < mVexs.length; i++)
            if (mVexs[i] == ch)
                return i;
        return -1;
    }

    /*
     * 读取一个输入字符
     */
    private char readChar() {
        char ch = '0';
        do {
            try {
                ch = (char) System.in.read(); //注意其用法 一定要加上while条件判断 否则就会出错
            } catch (IOException e) {
                e.printStackTrace();
            }
        } while (!((ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z')));
        return ch;
    }

    /*
     * 读取一个输入整数
     */
    private int readInt() {
        Scanner scanner = new Scanner(System.in);
        return scanner.nextInt();
    }

    /*
     * floyd最短路径。
     * 即,统计图中各个顶点间的最短路径。
     *
     * 参数说明:
     *     path -- 路径。path[i][j]=k表示,"顶点i"到"顶点j"的最短路径会经过顶点k。
     *     dist -- 长度数组。即,dist[i][j]=sum表示,"顶点i"到"顶点j"的最短路径的长度是sum。
     */
    public void floyd(int[][] path, int[][] dist) {
        int vlen = mVexs.length;//顶点数

        // 初始化
        for (int i = 0; i < vlen; i++) {
            for (int j = 0; j < vlen; j++) {
                dist[i][j] = mMatrix[i][j];    // "顶点i"到"顶点j"的路径长度为"i到j的权值"。
                path[i][j] = j;                // "顶点i"到"顶点j"的最短路径是经过顶点j。
            }
        }

        // 计算最短路径
        for (int k = 0; k < vlen; k++) {
            for (int i = 0; i < vlen; i++) {
                for (int j = 0; j < vlen; j++) {
                    // 如果经过下标为k顶点路径比原两点间路径更短,则更新dist[i][j]和path[i][j]
                    int tmp = (dist[i][k] == INF || dist[k][j] == INF) ? INF : (dist[i][k] + dist[k][j]);
                    if (dist[i][j] > tmp) {  //如果有多条路径值相等,则保留最初的一条
                        // "i到j最短路径"对应的值设,为更小的一个(即经过k)
                        dist[i][j] = tmp;
                        // "i到j最短路径"对应的路径,经过k
                        path[i][j] = path[i][k];
                    }
                }
            }
        }

        // 打印floyd最短路径的结果
        System.out.printf("floyd: \n");
        for (int i = 0; i < vlen; i++) {
            for (int j = 0; j < vlen; j++)
                System.out.printf("%2d  ", dist[i][j]);
            System.out.printf("\n");
        }
    }

    //打印floyd最短路径的具体路径  path[A][D]=F  没有E输出 因此需要递归
    //路径只有两种情况 要不就是ABI(B和I是相连通的) 要不就是AB......I(B和I之间还有需要元素)
    public void Pfloyd(int a, int b, int path[][]) {
        System.out.print(mVexs[a] + " ");
//        if (mMatrix[path[a][b]][b] == INF)  //原数组没有变化
//        {
//            Pfloyd(path[a][b], b, path);
//        }else{
//            System.out.print(mVexs[path[a][b]]+" "+mVexs[b]);
//        }

        int x=path[a][b];
        while(x!=b){
            System.out.print(mVexs[x]+" ");
            x=path[x][b];
        }
        System.out.print(mVexs[x]);
    }


    public static void main(String[] args) {
        char[] vexs = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
        int matrix[][] = {
                 /*A*//*B*//*C*//*D*//*E*//*F*//*G*/
          /*A*/ {0, 12, INF, INF, INF, 16, 14},
          /*B*/ {12, 0, 10, INF, INF, 7, INF},
          /*C*/ {INF, 10, 0, 3, 5, 6, INF},
          /*D*/ {INF, INF, 3, 0, 4, INF, INF},
          /*E*/ {INF, INF, 5, 4, 0, 2, 8},
          /*F*/ {16, 7, 6, 10000, 2, 0, 9},
          /*G*/ {14, INF, INF, INF, 8, 9, 0}};
        MatrixUDG pG;

        // 自定义"图"(输入矩阵队列)
        //pG = new MatrixUDG();

        // 采用已有的"图"
        pG = new MatrixUDG(vexs, matrix);

        int[][] path = new int[pG.mVexs.length][pG.mVexs.length];
        int[][] floy = new int[pG.mVexs.length][pG.mVexs.length];
        // floyd算法获取各个顶点之间的最短距离
        pG.floyd(path, floy);

        //输出任意两点之间最短路径长度以及其路径    这里不考虑输入节点相同的情况 太简单了
        System.out.println("请输入任意两节点:");
        int a = pG.getPosition(pG.readChar());
        int b = pG.getPosition(pG.readChar());
        System.out.println("两节点之间最短路径长度为:" + floy[a][b]);
        System.out.print("两节点之间路径为:");
        pG.Pfloyd(a, b, path);
    }
}




评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值