代码的时间复杂度和空间复杂度

本文详细介绍了代码的时间复杂度和空间复杂度概念。时间复杂度通过T(n)/f(n)的极限值来衡量算法效率,例如O(n2)表示随着问题规模n的增长,算法执行速度呈平方级下降。空间复杂度则关注算法运行中所需存储空间的增长关系,如O(1)表示常数空间复杂度,O(n)表示与数据规模成正比的空间需求。
摘要由CSDN通过智能技术生成

时间复杂度

一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n)) 为算法的渐进时间复杂度,简称时间复杂度。
在各种不同算法中,若算法中语句执行次数为一个常数,则时间复杂度为O(1),另外,在时间频度不相同时,时间复杂度有可能相同,如T(n)=n2+3n+4与T(n)=4n2+2n+1它们的频度不同,但时间复杂度相同,都为O(n2)。

上面的代码没有任何意义,甚至不是一个可运行的代码,我只是用来说明你在以后如何对代码进行执行分析,关于代码本身可不可以运行,就不需要你在这关心了。

a = 1
b = 2
c = 3

for i in range(n):
    for j in range(n):
        x = i * i
        y = j * j
        z = i * j

for k in range(n):
    u = a * k + b
    v = c * c

d = 4

上面的代码其实我们要分的话可以分成 4 部分:第 1 部分是 a,b,c 这 3 个赋值语句,执行次数也就是 3 次;第二部分是

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值