如何轻松愉快地理解条件随机场(CRF)?

理解条件随机场最好的办法就是用一个现实的例子来说明它。但是目前中文的条件随机场文章鲜有这样干的,可能写文章的人都是大牛,不屑于举例子吧。于是乎,我翻译了这篇文章。希望对其他伙伴有所帮助。 原文在这里[http://blog.echen.me/2012/01/03/introduction-to-c...

2019-06-04 09:46:24

阅读数 8

评论数 0

WARNING (theano.tensor.blas): Using NumPy C-API based implementation for BLAS functions.

安装theano时出现WARNING (theano.tensor.blas): Using NumPy C-API based implementation for BLAS functions.应该怎么解决 1.使用cmd安装类库 conda install mkl conda install...

2019-05-27 13:10:35

阅读数 8

评论数 0

Pytorch安装问题:pip3 install torchvision报错解决

问题描述 Collecting torchvision Using cached torchvision-0.1.8-py2.py3-none-any.whl Collecting torch (from torchvision) Using cached torch-0.1.2.post1....

2019-05-26 15:52:47

阅读数 8

评论数 0

如何安装多个Python版本以及在Pycharm中切换Python版本

前言: 最近由于工作需求,要在不同环境下玩Python,所以就有了以上的需求,查了一部分资料后,总结记录下整个问题的解决过程,方便后来者少跳坑。 参考:https://blog.csdn.net/dream_an/article/details/51248736 参考:https://blog.c...

2019-05-26 15:28:07

阅读数 23

评论数 0

PyCharm 中Virtualenv

首先看一个关于virtualenv的问题: 示例问题:pycharm新建项目时候,new environment 和 existing interpreter有什么区别,应该选哪一个? 示例答案: 字面意思,new environment是建立新的环境, existing interpr...

2019-05-26 14:45:46

阅读数 9

评论数 0

PyCharm三种解释器的区别(virtual Enviroment, system interpreter, conda Enviroment)

刚开始用Pycharm的时候,选择project interpreter,add local的设置解释器的时候,里面有三个选择: 1. virtual Enviroment 2. system interpreter 3. conda Enviroment 1. system interpre...

2019-05-26 14:35:17

阅读数 30

评论数 0

在GitHub 上下载指定的文件夹的两种方法

一、下载所有文件 首先介绍下如果你要下载GitHub下所有的项目文件的话,可以点击其主页下的Clone or download下的Download Zip ,可以直接下载到本地电脑;或者复制其链接,如下 然后再打开Git Bash,前提是你需要电脑已经下载安装好了Git,不会看这篇安装G...

2019-04-30 16:27:37

阅读数 16

评论数 0

Neo4j数据建模优化:双向关系

我们通常会将现实生活中的关系型数据,通过一定的方式,转化为图形化的结构存储起来。尽管图形化的结构相比于表结构更加直观,但也存在一些常见的误区。在这篇博文中,我们来讨论其中的一个容易让人混淆的概念:双向关系。 单向关系 在Neo4j中,所有的关系都必须有一个类型来进行区分,同时,也必须有一个方向...

2019-04-30 10:03:40

阅读数 24

评论数 0

知识图谱总体构建思路(流程图)

1 知识图谱的总体构建思路 如图所示,从原始的数据到形成知识图谱,经历了知识抽取、知识融合(实体对齐)、数据模型构建、质量评估等步骤。 原始的数据,按照数据的结构化程度来分,可以分为结构化数据、半结构化数据和非结构化数据,根据数据的不同的结构化形式,采用不同的方法,将数据转换为三元组的形式...

2019-04-25 16:49:42

阅读数 431

评论数 0

Beam Search(集束搜索/束搜索)

1.简介 Beam Search(集束搜索)是一种启发式图搜索算法,通常用在图的解空间比较大的情况下,为了减少搜索所占用的空间和时间,在每一步深度扩展的时候,剪掉一些质量比较差的结点,保留下一些质量较高的结点。这样减少了空间消耗,并提高了时间效率,但缺点就是有可能存在潜在的最佳方案被丢弃,因此B...

2019-04-22 10:01:27

阅读数 17

评论数 0

linux CUDA nvidia-smi无显存占用,手动释放(解决进程杀死,显存仍在的问题)

1 nvidia-smi 查看显存占用 2 fuser -v /dev/nvidia* 查看占用的死进程ID 3 sudo kill -9 PID 好,完美解决GPU显存释放问题!

2019-04-08 16:42:54

阅读数 57

评论数 0

用nohup执行python程序时,print无法输出

nohupPythontest.py >nohup.out 2>&1 & 发现nohup.out中显示不出来python程序中print的东西。 这是因为python的输出有缓冲,导致nohup.out并不能够马上看到输出。 pyt...

2019-04-08 15:48:25

阅读数 60

评论数 0

机器学习模型评估之“留出法(hold-out)”

留出法(hold-out) 直接将数据集D划分为两个互斥的集合,其中一个集合作为训练集S,另外一个作为测试集T,即D=S∪T,S∩T=0.在S上训练出模型后,用T来评估其测试误差,作为对泛化误差的评估 需要注意的问题: 1.训练/测试集的划分要尽可能的保持数据分布的一致性,避免因数据划分过程引入额...

2019-03-31 10:59:56

阅读数 185

评论数 0

远程监督浅谈

关系抽取是NER基础上的一个任务,就是抽取一个句子中实体对之间的关系。想要训练一个关系抽取器,给它一个句子俩实体,首先它需要知道给这俩实体间的关系打个什么标签,模型不可能自己给关系取名字,所以肯定需要人用标注好的语料告诉他,这俩实体间的关系叫啥。然后模型训练好了,再遇到哪个句子里有这种实体对,他就...

2019-03-30 10:19:34

阅读数 161

评论数 0

深入解析TensorFlow中滑动平均模型与代码实现

因为本人是自学深度学习的,有什么说的不对的地方望大神指出 指数加权平均算法的原理 TensorFlow中的滑动平均模型使用的是滑动平均(Moving Average)算法,又称为指数加权移动平均算法(exponenentially weighted average),这也是Exponentia...

2019-03-29 10:38:44

阅读数 21

评论数 0

比官方更简洁的Tensorflow入门教程

声明: 参考自Python TensorFlow Tutorial – Build a Neural Network,本文简化了文字部分 文中有很多到官方文档的链接,毕竟有些官方文档是中文的,而且写的很好。 Tensorflow入门 资源:付费tensorflow教程 Tensorflow...

2019-03-25 15:46:01

阅读数 25

评论数 0

TP/FN/FP/TN(符号含义)与confusion matrix

TP(True Positive):将正类预测为正类(的数目),真实为0,预测也为0; FN(False Negative):将正类预测为负类(的数目),真实为0,预测为1; FP(False Positive):将负类预测为正类(的数目), 真实为1,预测为0; TN(True Negat...

2019-03-16 16:53:37

阅读数 91

评论数 0

机器学习?有无监督、弱监督、半监督、强化、多示例学习是什么

什么是机器学习? 机器学习的定义有很多种,而且到目前为止也没有一个公认的定义,想要了解更多可以参考一下知乎https://www.zhihu.com/question/33892253的解答,有客观的回答,有深刻的幽默。 在这里我从定义的角度来让大家浅显的了解一下什么叫做机器学习,机器学习的定义...

2019-03-10 18:53:14

阅读数 150

评论数 0

去除win10小箭头、恢复win10小箭头(亲测有效)

1.去掉小箭头 reg add "HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\Shell Icons" /v 29 /d "%systemroo...

2019-03-06 16:06:13

阅读数 84

评论数 0

softmax详解简单入门

1.softmax初探 在机器学习尤其是深度学习中,softmax是个非常常用而且比较重要的函数,尤其在多分类的场景中使用广泛。他把一些输入映射为0-1之间的实数,并且归一化保证和为1,因此多分类的概率之和也刚好为1。 首先我们简单来看看softmax是什么意思。顾名思义,softmax由两个单...

2019-03-05 10:06:18

阅读数 42

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭