《密码编码学与网络安全》复习总结

这篇博客是对软院田园老师《密码编码学与网络安全》课程的复习总结,涵盖了数论、代数、公钥密码学、数字签名、加密协议和Hash函数等核心概念。重点包括欧几里得算法、欧拉定理、RSA算法、ElGamal和Schnorr签名方案、AES和DES加密算法,以及公钥分发和密钥控制策略。还提及了中间人攻击、模运算和同余理论、裴蜀定理等,并讨论了公钥证书在确保保密性和身份认证中的作用。
摘要由CSDN通过智能技术生成

软院田园老师的课,虽然上课没听(我觉得他讲得不好),自己看书也差不多看懂了七七八八,以下是看书过程中列出的部分重点

数论

  • 欧几里得算法三形式,思路
  • 欧拉定理、费马定理证明
  • 中国剩余定理 计算 可能和低幂次RSA攻击结合
  • 二次剩余 和概率性素数判断

代数

见下文

公钥密码学

  • RSA算法,计算、加密解密过程

数字签名

  • ElGamal 和 Schnorr 签名方案
  • 签名方案和加密方案结合的应用

加密协议

  • AES和DES,不直接考,要从协议分析题中能认出哪种对称加密

Hash函数

需要了解的几个基本知识点:

d 整除a记作:d∣a 整除是d作分母
如果d∣ad∣b,那么d∣(ax+by)
c=gcd(a,b),表示a和b的最大公因子,也表明c|ac|b,且a和b的任何公因子都是c的因子。定义gcd(0,0)=0,gcd(0,a)=|a|(因为0被任何非零整数整除)
因为最大公因子是正数,所以gcd(a,b) = gcd(|a|,|b|)
算术基本定理:任意大于1的整数N,都有图示成立
2019.06.11-20-49-53.png
可以通过这个简单地判断一个数是否是素数,也可以对合数作质因子分解
素数(也叫质数),指在大于1的自然数中,除了1和该数自身外,无法被其他自然数整除的数。大于1的自然数若不是素数,则称之为合数(如果n是一个合数,则在小于等于√n的数中必定有一个数a整除合数n)
任意两个质数互质,且唯一的正整数公因子是1。p是大于1的整数,则p和p−1构成互质关系;p是大于1的奇数,则p和p−2构成互质关系
素数p与1到p−1的任意整数均互质。并且阶乘(p−1)!与p互质

欧几里得定理:存在无穷个素数。也用来容易地求两个整数的最大公因子
对于整数a和b,用b除a得a = q1b+r1,可证明d=gcd(a,b)=gcd(b,r1)=gcd(ri,ri+1)=gcd(rn,0)=rn,也就是下图给出的
深度截图_选择区域_20190611211757.png

改进版的欧几里得定理公式:d=gcd(a,b)=gcd(b,a mod b),下面的算法就是这样的

//欧几里德算法迭代实现
    public static int getGCD(int a,int b) {
   
        if (a<b) {
   //保证a>=b
            return getGCD(b, a);
        }
        if (b>=1) {
   //保证b>=1
            int temp = 0;
            while(b>0) {
   
                temp = a%b;
                a = b;
                b = temp;
            }
            return a;
        }else {
   
            return -1;
        }
    }

看到一个证明 gcd(n,k)=gcd(n,n+k)挺有趣的,通过gcd的定义来证:

screenshot-socratic.org-2019.06.18-09-49-07.png

同理也可以证明gcd(a,n)=gcd(n,n-a)等等

模运算和同余
a≡b(mod n) 表示a mod n = b mod n同余。a mod n是a除以n的余数,n|a可以表示为a≡0(mod n)
还有啥负数对整数求模时,比如-11 mod 7 = 3 = -2*7+3
模运算性质:
n|(a-b),则a≡b(mod n)

同余方程

2019.06.11-23-16-35.png

上图的ax ≡ c(mod m) 也称线性同余方程,线性是指方程的未知数是一次的,方程有解当且仅当gcd(a,m)|c,且恰有d=gcd(a,m)个解(在模 m 的完全剩余系 {0,1,…,m-1} 中)

**模反元素:**指正整数a和m互质,一定可以找到整数b,使得 m|ab-1

**裴蜀定理:**关于线性方程ax+by=d有解,当且仅当gcd(a,b)|d

扩展的欧里几德定理,求同余方程解、RSA中也用来求私钥中的d

费马定理

如果p是素数,且a是不被p整除的正整数,则 $ a^{p-1} mod : p=1 , 即 ,即 a^{p-1}=1(mod : p) $

舍去a不被p整除的条件,则$ a^{p-1}=a(mod : p) $

证明:

{a mod p,2a mod p,...,(p-1)a mod p}是{1,2,...,p-1}的置换形
所以,{a×2a×...×(p-1)a}≡(1×2×...×(p-1))(mod p)≡(p-1)!(mod p)
化简,(p-1)!a^(p-1)≡(p-1)!(mod p)
因为p为质数,且p和1到p-1中整数都互质,所以可消去(p-1)!,得a^(p-1)≡1(mod p)

欧拉函数ϕ(m),表示1到m-1中与m互质的整数个数。因此有两个结论:

2019.06.12-11-48-36.png

欧拉定理

  • 如果gcd(a,m)=1(a,m互质),则$ a^{ϕ(m)}=1(mod : m) $

  • 同上但a,m不互质,则$ a^{ϕ(m)}=a(mod : m) $

证明:

考虑集合 R = { x 1 , x 2 , . . . , x ϕ ( m ) } R=\left \{ x_{1} ,x_{2},...,x_{ϕ(m)} \right \} R={ x1,x2,...,xϕ(m)} S = { a x 1 &MediumSpace; m o d &MediumSpace; m , a x 2 &MediumSpace; m o d &MediumSpace; m , . . . , a x ϕ ( m ) &MediumSpace; m o d &MediumSpace; m } S=\left \{ ax_{1} \: mod \: m ,ax_{2}\: mod \: m,...,ax_{ϕ(m)} \: mod \: m \right \} S={ ax1modm,ax2modm,...,axϕ(m)modm},每一个元素 x i x_i xi都与m互质,且 x i ≠ x j x_i \neq x_j xi̸=xj,则 a x i &MediumSpace; m o d &MediumSpace; m ≠ a x j &MediumSpace; m o d &MediumSpace; m ax_{i} \: mod \: m \neq ax_{j} \: mod \: m aximodm̸=axjmodm(即S中不含重复元素)

所以S也是R的一个置换形

所以
a ϕ ( m ) ∗ x 1 ∗ x 2 ∗ . . . ∗ x ϕ ( m ) &MediumSpace; m o d &MediumSpace; m = ( a x 1 ) ∗ ( a x 2 ) ∗ . . . ∗ ( a x ϕ ( m ) ) &MediumSpace; m o d &MediumSpace; m = ( ( a x 1 &MediumSpace; m o d &MediumSpace; m ) ∗ ( a x 2 &MediumSpace; m o d &MediumSpace; m ) ∗ . . . ∗ ( a x ϕ ( m ) &MediumSpace; m o d &MediumSpace; m ) ) &MediumSpace; m o d &MediumSpace; m = x 1 ∗ x 2 ∗ . . . ∗ x ϕ ( m ) &MediumSpace; m o d &MediumSpace; m 因 为 x i 与 m 互 质 , 所 以 两 边 可 以 消 去 x 1 ∗ x 2 ∗ . . . ∗ x ϕ ( m ) 得 : a ϕ ( m ) &MediumSpace;

  • 4
    点赞
  • 31
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
密码编码学与网络安全——原理与实践(第三版)(PDF中文版)相关资源: 密码编码学与网络安全——原理与实践(第三版)(PDF中文版)part1(压缩包名:密码编码学与网络安全——原理与实践(第三版).part1); 密码编码学与网络安全——原理与实践(第三版)(PDF中文版)part2(压缩包名:密码编码学与网络安全——原理与实践(第三版).part2); 密码编码学与网络安全——原理与实践(第三版)(PDF中文版)part3(压缩包名:密码编码学与网络安全——原理与实践(第三版).part3) 其余部分可在“搜索”按钮前面的文本框内填上本资源的关键字进行搜索。 或者点击“高级搜索”按钮进入“高级搜索”,在“搜索结果”中的“以下用户上传”后面的文本框内输入 ybwd8866 然后点击旁边的“高级搜索”按钮,进入【 正在浏览用户"ybwd8866"发布的资源 查看ybwd8866的所有资源 】页面,进行查找并下载。 或者点击“高级搜索”按钮进入“高级搜索”,在“搜索结果”中的“包含以下全部的字词”后面的文本框中输入本资源的关键字,或者输入资源的全名,然后在“搜索结果”中的“以下用户上传”后面的文本框内输入 ybwd8866 然后点击旁边的“高级搜索”按钮,进入【 正在浏览用户"ybwd8866"发布的资源 查看ybwd8866的所有资源 】页面,进行查找并下载。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值