一道比较基础的树形DP,不需要建树(刚学还以为要建树哈哈)如果有DP基础,那理解了,其实这道题难度不大
上代码及注释
#include<iostream>
#include<vector>
using namespace std;
const int maxn = 6e3 + 520;
vector<int>ch[maxn];
int n, r[maxn],fa[maxn],f[maxn][2],rt;//rt是根节点,f数组是指当前节点的人出席(1)或不出席(0)的快乐最大值
void dfs(int u)//递归该节点,求出该节点的快乐最大值
{
int k = ch[u].size();//父节点一共有k个子节点
for (int j = 0; j < k; j++)//遍历
{
int v = ch[u][j];
dfs(v);
f[u][0] += max(f[v][1], f[v][0]);//当前节点不出席,子节点就有两种情况,取最大值
f[u][1] += f[v][0];//当前节点出席,子节点只能不出席
} //因为快乐值是指所有人的总和,所以是 +=
}
int main()
{
cin >> n;
for (int i = 1; i <= n; i++)
{
cin >> r[i];
f[i][1] = r[i];
}
for (int i = 1; i < n; i++)
{
int a, b;
cin >> a >> b;
fa[a] = b; //子节点指向父节点
ch[b].push_back(a);//父节点里面加入子节点
}
for (int i = 1; i <= n; i++)
{
if (fa[i] == 0)//如果该节点的父节点是0(即没有指向任何一个节点)
{
rt = i; //那么他就是所有人的根节点root(最大的领导)
break;
}
}
dfs(rt);//从根节点开始
cout << max(f[rt][1], f[rt][0]);//从两种情况里面选最大值
return 0;
}
。。。。。。。。。。。。。。。。。。。
注释应该很清楚了
。。。。。。。。。。。。。。。。。。。