题目描述
Perket 是一种流行的美食。为了做好 Perket,厨师必须谨慎选择食材,以在保持传统风味的同时尽可能获得最全面的味道。你有 nn 种可支配的配料。对于每一种配料,我们知道它们各自的酸度 ss 和苦度 bb。当我们添加配料时,总的酸度为每一种配料的酸度总乘积;总的苦度为每一种配料的苦度的总和。
众所周知,美食应该做到口感适中,所以我们希望选取配料,以使得酸度和苦度的绝对差最小。
另外,我们必须添加至少一种配料,因为没有任何食物以水为配料的。
输入格式
第一行一个整数 nn,表示可供选用的食材种类数。
接下来 nn 行,每行 22 个整数 s_isi 和 b_ibi,表示第 ii 种食材的酸度和苦度。
输出格式
一行一个整数,表示可能的总酸度和总苦度的最小绝对差。
输入输出样例
输入 #1复制
1 3 10
输出 #1复制
7
输入 #2复制
2 3 8 5 8
输出 #2复制
1
输入 #3复制
4 1 7 2 6 3 8 4 9
输出 #3复制
1
说明/提示
数据规模与约定
对于 100% 的数据,有 1≤n≤10,且将所有可用食材全部使用产生的总酸度和总苦度小于 10^91×109,酸度和苦度不同时为 11 和 00。
上代码:
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const int M=15;//养成良好习惯
int a[M],b[M],n,ans=0x7f;
//ans初始化为最大值
void dfs(int i,int x,int y){
//i是表示目前的配料编号,x为酸度,y为甜度
if(i>n){
//注意,必须大于n才表示全部搜完
if(x==1&&y==0)return;
//判断清水的情况
ans=min(abs(x-y),ans);
//更新ans
return;
}
//分两种情况搜索:1添加 2不添加
dfs(i+1,x*a[i],y+b[i]);
dfs(i+1,x,y);
//这题无需回溯,不明白为何有些题解居然还用全局变量,非得回溯-_-||
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d%d",&a[i],&b[i]);
//读入,用cin太慢了
}
dfs(1,1,0);
printf("%d\n",ans);
return 0;
}