题目描述
Emiya 是个擅长做菜的高中生,他共掌握 nn 种烹饪方法,且会使用 mm 种主要食材做菜。为了方便叙述,我们对烹饪方法从 1 \sim n1∼n 编号,对主要食材从 1 \sim m1∼m 编号。
Emiya 做的每道菜都将使用恰好一种烹饪方法与恰好一种主要食材。更具体地,Emiya 会做 a_{i,j}ai,j 道不同的使用烹饪方法 ii 和主要食材 jj 的菜(1 \leq i \leq n, 1 \leq j \leq m1≤i≤n,1≤j≤m),这也意味着 Emiya 总共会做 \sum\limits_{i=1}^{n} \sum\limits_{j=1}^{m} a_{i,j}i=1∑nj=1∑mai,j 道不同的菜。
Emiya 今天要准备一桌饭招待 Yazid 和 Rin 这对好朋友,然而三个人对菜的搭配有不同的要求,更具体地,对于一种包含 kk 道菜的搭配方案而言:
- Emiya 不会让大家饿肚子,所以将做至少一道菜,即 k \geq 1k≥1
- Rin 希望品尝不同烹饪方法做出的菜,因此她要求每道菜的烹饪方法互不相同
- Yazid 不希望品尝太多同一食材做出的菜,因此他要求每种主要食材至多在一半的菜(即 \lfloor \frac{k}{2} \rfloor⌊2k⌋ 道菜)中被使用
这里的 \lfloor x \rfloor⌊x⌋ 为下取整函数,表示不超过 xx 的最大整数。
这些要求难不倒 Emiya,但他想知道共有多少种不同的符合要求的搭配方案。两种方案不同,当且仅当存在至少一道菜在一种方案中出现,而不在另一种方案中出现。
Emiya 找到了你,请你帮他计算,你只需要告诉他符合所有要求的搭配方案数对质数 998,244,353998,244,353 取模的结果。
输入格式
第 1 行两个用单个空格隔开的整数 n,mn,m。
第 2 行至第 n + 1n+1 行,每行 mm 个用单个空格隔开的整数,其中第 i + 1i+1 行的 mm 个数依次为 a_{i,1}, a_{i,2}, \cdots, a_{i,m}ai,1,ai,2,⋯,ai,m。
输出格式
仅一行一个整数,表示所求方案数对 998,244,353998,244,353 取模的结果。
输入输出样例
输入 #1复制
2 3 1 0 1 0 1 1
输出 #1复制
3
输入 #2复制
3 3 1 2 3 4 5 0 6 0 0
输出 #2复制
190
输入 #3复制
5 5 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 1 0 1 0 1 0 1 1 0 1
输出 #3复制
742
说明/提示
【样例 1 解释】
由于在这个样例中,对于每组 i, ji,j,Emiya 都最多只会做一道菜,因此我们直接通过给出烹饪方法、主要食材的编号来描述一道菜。
符合要求的方案包括:
- 做一道用烹饪方法 1、主要食材 1 的菜和一道用烹饪方法 2、主要食材 2 的菜
- 做一道用烹饪方法 1、主要食材 1 的菜和一道用烹饪方法 2、主要食材 3 的菜
- 做一道用烹饪方法 1、主要食材 3 的菜和一道用烹饪方法 2、主要食材 2 的菜
因此输出结果为 3 \mod 998,244,353 = 33mod998,244,353=3。 需要注意的是,所有只包含一道菜的方案都是不符合要求的,因为唯一的主要食材在超过一半的菜中出现,这不满足 Yazid 的要求。
【样例 2 解释】
Emiya 必须至少做 2 道菜。
做 2 道菜的符合要求的方案数为 100。
做 3 道菜的符合要求的方案数为 90。
因此符合要求的方案数为 100 + 90 = 190。
【数据范围】
测试点编号 | n=n= | m=m= | a_{i,j}<ai,j< | 测试点编号 | n=n= | m=m= | a_{i,j}<ai,j< |
---|---|---|---|---|---|---|---|
11 | 22 | 22 | 22 | 77 | 1010 | 22 | 10^3103 |
22 | 22 | 33 | 22 | 88 | 1010 | 33 | 10^3103 |
33 | 55 | 22 | 22 | 9\sim 129∼12 | 4040 | 22 | 10^3103 |
44 | 55 | 33 | 22 | 13\sim 1613∼16 | 4040 | 33 | 10^3103 |
55 | 1010 | 22 | 22 | 17\sim 2117∼21 | 4040 | 500500 | 10^3103 |
66 | 1010 | 33 | 22 | 22\sim 2522∼25 | 100100 | 2\times 10^32×103 | 998244353998244353 |
对于所有测试点,保证 1 \leq n \leq 1001≤n≤100,1 \leq m \leq 20001≤m≤2000,0 \leq a_{i,j} \lt 998,244,3530≤ai,j<998,244,353。
上代码:
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#define mod 998244353
using namespace std;
typedef long long ll;
const int MAXN = 105, MAXM = 2005;
int n,m,a[MAXN][MAXM],sum[MAXN][MAXM];
ll f[MAXN][MAXN*2],g[MAXN][MAXN];
int main()
{
cin >> n >> m;
for(int i = 1; i<=n; i++)
for(int j = 1; j<=m; j++)
{
scanf("%d",&a[i][j]);
sum[i][0] = (sum[i][0]+a[i][j])%mod;
}
for(int i = 1; i<=n; i++)
for(int j = 1; j<=m; j++)
sum[i][j] = (sum[i][0]-a[i][j]+mod)%mod;
ll ans = 0;
for(int col = 1; col<=m; col++)
{
memset(f,0,sizeof(f));
f[0][n] = 1;
for(int i = 1; i<=n; i++)
for(int j = n-i; j<=n+i; j++)
f[i][j] = (f[i-1][j]+f[i-1][j-1]*a[i][col]%mod+f[i-1][j+1]*sum[i][col]%mod)%mod;
for(int j = 1; j<=n; j++)
ans = (ans+f[n][n+j])%mod;
}
g[0][0] = 1;
for(int i = 1; i<=n; i++)
for(int j = 0; j<=n; j++)
g[i][j] = (g[i-1][j]+(j>0?g[i-1][j-1]*sum[i][0]%mod:0))%mod;
for(int j = 1; j<=n; j++)
ans = (ans-g[n][j]+mod)%mod;
cout << ans*(mod-1)%mod << endl;
return 0;
}