使用Python进行Google BigQuery数据批量和自动化处理
在大数据分析的日常工作中,定期更新、查询和处理数据是一项必不可少的任务。Google BigQuery结合Python脚本,可大幅简化这一过程。本文将介绍如何通过Python自动查询和更新BigQuery中的降水量数据,适用于需要定期获取最新信息的数据分析场景。
我们将基于Google的公共数据集中的天气降水量数据集来进行实际演示,并实现一个Python脚本自动化数据更新的示例。
数据集选择及准备
Google提供了众多免费的公共数据集,其中的“NOAA Global Surface Summary of the Day Weather Data”包含各地的历史天气信息,包括降水量。这个数据集适合我们演示批量查询和更新流程。
-
连接BigQuery并检查表结构:
-
首先,确保Python已安装Google Cloud BigQuery库。使用以下命令安装BigQuery客户端库:
pip install google-cloud-bigquery
-
在脚本中导入
bigquery
库并设置连接。以下是基本的连接代码:from google.cloud import bigquery # 初始化BigQuery客户端 client = bigquery.Client()
-
-
查询降水量数据
假设我们希望获取某地最近一个月的每日降水量,可以使用SQL查询。例如,假设我们查询的是数据集中“日降水量”和“观测日期”等字段。
SELECT
date,
stn,
prcp
FROM
`bigquery-public-