Hadoop 提取KPI 进行海量Web日志分析

本文介绍了如何使用Hadoop进行海量Web日志分析,提取关键性能指标(KPI),包括PV、IP、访问时间、来源和浏览器统计。通过MapReduce并行算法设计,实现了日志数据的高效处理,以及KPI系统架构的详细设计和程序开发。
摘要由CSDN通过智能技术生成

Hadoop 提取KPI 进行海量Web日志分析

Web日志包含着网站最重要的信息,通过日志分析,我们可以知道网站的访问量,哪个网页访问人数最多,哪个网页最有价值等。一般中型的网站(10W的PV以上),每天会产生1G以上Web日志文件。大型或超大型的网站,可能每小时就会产生10G的数据量。

  • Web日志分析概述
  • 需求分析:KPI指标设计
  • 算法模型:Hadoop并行算法
  • 架构设计:日志KPI系统架构
  • 程序开发:MapReduce程序实现

1. Web日志分析概述

Web日志由Web服务器产生,可能是Nginx, Apache, Tomcat等。从Web日志中,我们可以获取网站每类页面的PV值(PageView,页面访问量)、独立IP数;稍微复杂一些的,可以计算得出用户所检索的关键词排行榜、用户停留时间最高的页面等;更复杂的,构建广告点击模型、分析用户行为特征等等。

在Web日志中,每条日志通常代表着用户的一次访问行为,例如下面就是一条nginx日志:

222.68.172.190 - - [18/Sep/2013:06:49:57 +0000] "GET /images/my.jpg HTTP/1.1" 200 19939
 "http://www.angularjs.cn/A00n" "Mozilla/5.0 (Windows NT 6.1)
 AppleWebKit/537.36 (KHTML, like Gecko) Chrome/29.0.1547.66 Safari/537.36"

拆解为以下8个变量

  • remote_addr: 记录客户端的ip地址, 222.68.172.190
  • remote_user: 记录客户端用户名称, –
  • time_local: 记录访问时间与时区, [18/Sep/2013:06:49:57 +0000]
  • request: 记录请求的url与http协议, “GET /images/my.jpg HTTP/1.1”
  • status: 记录请求状态,成功是200, 200
  • body_bytes_sent: 记录发送给客户端文件主体内容大小, 19939
  • http_referer: 用来记录从那个页面链接访问过来的, “http://www.angularjs.cn/A00n
  • http_user_agent: 记录客户浏览器的相关信息, “Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/29.0.1547.66 Safari/537.36”

注:要更多的信息,则要用其它手段去获取,通过js代码单独发送请求,使用cookies记录用户的访问信息。

利用这些日志信息,我们可以深入挖掘网站的秘密了。

少量数据的情况

少量数据的情况(10Mb,100Mb,10G),在单机处理尚能忍受的时候,我可以直接利用各种Unix/Linux工具,awk、grep、sort、join等都是日志分析的利器,再配合perl, python,正则表达工,基本就可以解决所有的问题。

例如,我们想从上面提到的nginx日志中得到访问量最高前10个IP,实现很简单:

~ cat access.log.10 | awk '{a[$1]++} END {for(b in a) print b"\t"a[b]}' | sort -k2 -r | head -n 10
163.177.71.12   972
101.226.68.137  972
183.195.232.138 971
50.116.27.194   97
14.17.29.86     96
61.135.216.104  94
61.135.216.105  91
61.186.190.41   9
59.39.192.108   9
220.181.51.212  9

海量数据的情况

当数据量每天以10G、100G增长的时候,单机处理能力已经不能满足需求。我们就需要增加系统的复杂性,用计算机集群,存储阵列来解决。在Hadoop出现之前,海量数据存储,和海量日志分析都是非常困难的。只有少数一些公司,掌握着高效的并行计算,分步式计算,分步式存储的核心技术。

Hadoop的出现,大幅度的降低了海量数据处理的门槛,让小公司甚至是个人都能力,搞定海量数据。并且,Hadoop非常适用于日志分析系统。

2.需求分析:KPI指标设计

下面我们将从一个公司案例出发来全面的解释,如何用进行 海量Web日志分析,提取KPI数据 。

案例介绍

某电子商务网站,在线团购业务。每日PV数100w,独立IP数5w。用户通常在工作日上午10:00-12:00和下午15:00-18:00访问量最大。日间主要是通过PC端浏览器访问,休息日及夜间通过移动设备访问较多。网站搜索浏量占整个网站的80%,PC用户不足1%的用户会消费,移动用户有5%会消费。

通过简短的描述,我们可以粗略地看出,这家电商网站的经营状况,并认识到愿意消费的用户从哪里来,有哪些潜在的用户可以挖掘,网站是否存在倒闭风险等。

KPI指标设计

  • PV(PageView): 页面访问量统计
  • IP: 页面独立IP的访问量统计
  • Time: 用户每小时PV的统计
  • Source: 用户来源域名的统计
  • Browser: 用户的访问设备统计

从商业的角度,个人网站的特征与电商网站不太一样,没有转化率,同时跳出率也比较高。从技术的角度,同样都关注KPI指标设计。

3.算法模型:Hadoop并行算法

并行算法的设计:

PV(PageView): 页面访问量统计

Map过程{key:request,value:1}
Reduce过程{key:request,value:求和(sum)}

IP: 页面独立IP的访问量统计

Map: {key:request,value:remote_addr}
Reduce: {key:request,value:去重再求和(sum(unique))}

Time: 用户每小时PV的统计

Map: {key:time_local,value:1}
Reduce: {key:time_local,value:求和(sum)}

Source: 用户来源域名的统计

Map: {key:http_referer,value:1}
Reduce: {key:http_referer,value:求和(sum)}

Browser: 用户的访问设备统计

Map: {key:http_user_agent,value:1}
Reduce: {key:http_user_agent,value:求和(sum)}

4.架构设计:日志KPI系统架构

这里写图片描述

上图中,左边是Application业务系统,右边是Hadoop的HDFS, MapReduce。

1.日志是由业务系统产生的,我们可以设置web服务器每天产生一个新的目录,目录下面会产生多个日志文件,每个日志文件64M。
2.设置系统定时器CRON,夜间在0点后,向HDFS导入昨天的日志文件。
3.完成导入后,设置系统定时器,启动MapReduce程序,提取并计算统计指标。
4.完成计算后,设置系统定时器,从HDFS导出统计指标数据到数据库,方便以后的即使查询。

这里写图片描述

上面这幅图,我们可以看得更清楚,数据是如何流动的。蓝色背景的部分是在Hadoop中的,接下来我们的任务就是完成MapReduce的程序实现。

5.程序开发2:MapReduce程序实现

开发流程:

  • 对日志行的解析
  • Map函数实现
  • Reduce函数实现
  • 启动程序实现

    1). 对日志行的解析

新建文件:org.apache.hadoop.mr.kpi
这里写图片描述

整体代码

package org.apache.hadoop.mr.kpi;

import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.HashSet;
import java.util.Locale;
import java.util.Set;

public class KPI {
   

    /**
     * 20160512
     * @author yue
     */
    private String remote_addr; //记录客户端的IP地址
    private String remote_user;   //记录客户端用户名称,忽略属性“-”
    private String time_local;  //记录访问时间与时区
    private String request;  //记录请求的URL和http协议
    private String status;  //记录请求状态,成功是200
    private String body_bytes_sent;  //记录发送给客户端文件主体内容大小
    private String http_referer; //用来记录从哪个页面链接访问过来的
    private String http_user_agent; //记录客户浏览器的相关信息
    private boolean valid = true ; //判断数据是否合法

    private static KPI parser(String line){
        System.out.println(line);
        KPI kpi = new KPI();
        String[] arr = line.split(" ");
        if (arr.length>11){
            kpi.setRemote_addr(arr[0]);
            kpi.setRemote_user(arr[1]);
            kpi.setTime_local(arr[3].substring(1));
            kpi.setRequest(arr[6]);
            kpi.setStatus(arr[8]);
            kpi.setBody_bytes_sent(arr[9]);
            kpi.setHttp_referer(arr[10]);

            if(arr.length>12){
                kpi.setHttp_user_agent(arr[11] + " " + arr[12]);
            } else {
                kpi.setHttp_user_agent(arr[11]);
            }

            if(Integer.parseInt(kpi.getStatus()) >= 400){
                //大于400,http錯誤
                kpi.setValid(false);
            }
        }else{
            kpi.setValid(false);
        }
        return kpi;
    }
    /**
     * 按page的pv分类
     * pageview:页面访问量统计
     * @return
     */
    public static KPI filterPVs(String line){
        KPI kpi = parser(line);
        Set<String> pages = new HashSet<String>();
        pages.add("/about/");
        pages.add("/black-ip-clustor/");
        pages.add("/cassandra-clustor/");
        pages.add("/finance-rhive-repurchase/");
        pages.add("/hadoop-familiy-roadmap/");
        pages.add("/hadoop-hive-intro/");
        pages.add("/hadoop-zookeeper-intro/");
        pages.add("/hadoop-mahout-roadmap/");

        if(!pages.contains(kpi.getRequest())){
            kpi.setValid(false);
        }
        return kpi;
    }
    /**
     * 按page的独立IP分类
     * @return
     */
    public 
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值