Speicial Numbers

Special Numbers

斯特林数
第二类斯特林数

记第二类斯特林数 S ( n , k ) S(n, k) S(n,k),或者 { n k } \begin{Bmatrix}n\\k\end{Bmatrix} { nk} 表示将 n n n 件物品放入 k k k 个非空集合里的方案数。

一些特殊的第二类斯特林数值为:

  • $ \begin{Bmatrix}0\0\end{Bmatrix} = 1$
  • $ \begin{Bmatrix}n\0\end{Bmatrix} = 0\ (n > 0)$
  • $ \begin{Bmatrix}n\2\end{Bmatrix} = 2^{n - 1} - 1$

观察规律可以得到第二类斯特林数的递推式:
{ n k } = k { n − 1 k } + { n − 1 k − 1 } \begin{Bmatrix}n\\k\end{Bmatrix} = k \begin{Bmatrix}n-1\\k\end{Bmatrix} + \begin{Bmatrix}n-1\\k-1\end{Bmatrix} { nk}=k{ n1k}+{ n1k1}
从组合的角度上理解这个问题即为,最后一个物品可以单独放入一个没有过物品的集合中,也可以放入一个已经有物品的集合里。

第一类斯特林数

记第一类斯特林数 s ( n , k ) s(n, k) s(n,k),或者 [ n k ] \begin{bmatrix}n\\k\end{bmatrix} [nk] 表示把 n n n 个物品放入 k k k 个环中的方案数,代表着长度为 n n n,总共存在 k k k 个循环的置换个数。

先考虑一个 n n n 元环有多少种存在可能,找规律不难发现一个 n n n 元环共有 n ! n = ( n − 1 ) ! \frac{n!}{n} = (n - 1)! nn!=(n1)! 中不同可能。

因此有
[ n 1 ] = ( n − 1 ) ! \begin{bmatrix}n\\1\end{bmatrix} = (n - 1)! [n1]=(n1)!
比较第一、二类斯特林数不难发现有
[ n k ] ≥ { n k } \begin{bmatrix}n\\k\end{bmatrix} \ge \begin{Bmatrix}n\\k\end{Bmatrix} [nk]

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值