Discrete Calculas

4 篇文章 0 订阅
1 篇文章 0 订阅

Discrete Calculas

定义

类比连续状况下的微积分。

导数

在连续状况下,一个函数的导数定义为:
D f ( x ) = lim ⁡ h → 0 f ( x + h ) − f ( x ) h Df(x) = \lim_{h \rightarrow 0} \frac{f(x+h) - f(x)}{h} Df(x)=h0limhf(x+h)f(x)
在离散状况下, h → 0 h \rightarrow 0 h0 等价于 h = 1 h = 1 h=1,等价的运算为差分 Δ \Delta Δ, 定义为:
Δ f ( x ) = f ( x + 1 ) − f ( x ) \Delta f(x) = f(x + 1) - f(x) Δf(x)=f(x+1)f(x)
考虑 m m m 次幂的导数,在无限微积分中, f ( x ) = x m f(x) = x ^m f(x)=xm 的导数为:
D f ( x ) = m x m − 1 Df (x) = mx^{m - 1} Df(x)=mxm1
在离散状况下,普通的 m m m 次幂很明显没有等价的好性质,而拥有等价性质的运算为下降幂,定义 x m ‾ x^{\underline{m}} xm 为:
x m ‾ = m   f a c t o r s x ( x − 1 ) … ( x − m + 1 ) ⏞        m ≥ 0 x m ‾ = 1 ( x + 1 ) ( x + 2 ) … ( x + m )        m &lt; 0 x ^ {\underline{m}} = \begin{matrix}{m \ factors}\\\overbrace{x (x - 1)\dots (x - m + 1)}\end{matrix} \ \ \ \ \ \ m \geq 0 \\ x^{\underline m} = \frac{1}{(x +1)(x +2) \dots (x +m)} \ \ \ \ \ \ m &lt;0 xm=m factorsx(x1)(xm+1)       m0xm=(x+1)(x+2)(x+m)1      m<0
对于下降幂,就有:
Δ ( x m ‾ = m x m − 1 ‾ ) \Delta(x ^ {\underline {m}} = mx^{\underline {m - 1}}) Δ(xm=mxm1)

不定积分

在连续情况下,由微积分基本定理有:
g ( x ) = D f ( x ) &ThickSpace; ⟺ &ThickSpace; ∫ g ( x )   d x = f ( x ) + C g(x) = Df(x) \iff \int g(x) \ dx = f(x) +C g(x)=Df(x)g(x) dx=f(x)+C
同样的类比到离散情况:
g ( x ) = Δ f ( x ) &ThickSpace; ⟺ &ThickSpace; ∑ g ( x )   δ x = f ( x ) + C g(x) = \Delta f(x) \iff \sum g(x) \ \delta x = f(x) +C g(x)=Δf(x)g(x) δx=f(x)+C
其中,变量 C C C 对于连续情况下必须是常数,而在离散状况下只需要是满足 p ( x + 1 ) = p ( x ) p(x +1) = p(x) p(x+1)=p(x) 的函数 p ( x ) p(x) p(x) 即可。

定积分

对于定积分,在连续条件下,若 g ( x ) = D f ( x ) g(x) = Df(x) g(x)=Df(x),则:
∫ a b g ( x )   d x = f ( b ) − f ( a ) \int_{a}^{b} g(x)\ dx = f(b) - f(a) abg(x) dx=f(b)f(a)

  • 同样的,在离散条件下,若 g ( x ) = Δ f ( x ) g(x) = \Delta f(x) g(x)=Δf(x), 则:

∑ a b g ( x )   δ x = f ( b ) − f ( a ) \sum_{a} ^ b g(x) \ \delta x = f(b) - f(a) abg(x) δx=f(b)f(a)

其中定积分的含义为:
∑ a b g ( x )   δ x = ∑ i = a b − 1 g ( i ) \sum_{a} ^ b g(x) \ \delta x = \sum_{i = a} ^ {b - 1} g(i) abg(x) δx=i=ab1g(i)
不包含上界的前缀和。

运算
  • x m + n ‾ = x m ‾ x n ‾ = x m ‾ ( x − m ) n ‾ x^{\underline {m +n}} =x^{\underline m} x^{\underline n} = x^{\underline m}(x - m)^{\underline n} xm+n=xmxn=xm(xm)n
  • 调和级数 H n = ∑ i = 1 n 1 i H_n = \sum_{i = 1} ^ n \frac{1}{i} Hn=i=1ni1 的导数为 x − 1 ‾ x^{\underline {-1}} x1,与连续微积分中的 ln ⁡ x \ln x lnx 相似
  • 2 x 2^x 2x 的导数仍为 2 x 2^x 2x,与连续微积分中的 e x e^x ex 相似
  • ∑ a b x − 1 ‾   δ x = H x ∣ a b \sum_{a} ^ b x^{\underline {-1}} \ \delta x = H_x \mid _{a}^b abx1 δx=Hxab
  • Δ u ( x ) v ( x ) = u ( x ) Δ v ( x ) + v ( x + 1 ) Δ ( u ( x ) ) \Delta {u(x) v(x)} = u(x)\Delta v(x) +v(x +1) \Delta(u(x)) Δu(x)v(x)=u(x)Δv(x)+v(x+1)Δ(u(x))
  • 下降幂满足二项式定理,即 ( x + y ) 2 ‾ = x 2 ‾ + 2 x 1 ‾ y 1 ‾ + y 2 ‾ (x +y)^{\underline 2} = x^{\underline 2} +2x^{\underline 1}y^{\underline 1} +y^{\underline 2} (x+y)2=x2+2x1y1+y2
应用

将定积分运算与下降幂进行关联,不难发现:
∑ 0 ≤ k &lt; n k m ‾ = n m + 1 ‾ m + 1 \sum_{0 \le k &lt; n} k^{\underline m} = \frac{n^{\underline {m+ 1}}}{m +1} 0k<nkm=m+1nm+1
特别地,在 m = 1 m = 1 m=1 的情况下,我们可以发现:
∑ 0 ≤ k &lt; n k = n 2 ‾ 2 = n × ( n − 1 ) 2 \sum_{0 \le k &lt;n} k = \frac{n^{\underline 2}}{2} = \frac{n\times(n - 1)}{2} 0k<nk=2n2=2n×(n1)
即自然数求和公式。

同时,我们还可以利用快速求出下降幂之值的思想计算形如 k m k^m km 的值,做法为将 k m k^m km 配凑为几个下降幂之和的形式,例如:
∵ k 2 = k 2 ‾ + k 1 ‾ ∴ ∑ 0 ≤ k &lt; n k 2 = n 3 ‾ 3 + n 2 ‾ 2 = n × ( n − 1 ) × ( 2 n − 1 ) 6 \because k^2 = k^{\underline 2} + k^{\underline 1} \\ \therefore \sum_{0 \le k &lt;n} k^2 = \frac{n^{\underline 3}}{3} + \frac{n^{\underline 2}}{2} = \frac{n \times (n - 1) \times (2n - 1)}{6} k2=k2+k10k<nk2=3n3+2n2=6n×(n1)×(2n1)

无限求和

对于有限项数的求和,一个通用的办法是使用错位相减,然而在无限状况下这一方法存在反例。不难举出一个发散序列的例子,如:
T = 1 + 2 + 4 + ⋯ T = 1 +2 +4 +\cdots T=1+2+4+
那么不难发现,按照原先的推理:
∵ 2 T = 2 + 4 + 8 + ⋯ = T − 1 ∴ T = − 1 \because 2T = 2 +4 +8 +\cdots = T - 1 \\ \therefore T = -1 2T=2+4+8+=T1T=1
显然错误。

有这样一个反例为例,我们不难拿连续情况下的收敛—发散来定义无限数列的和。当数列发散时,数列之和就为 ∞ \infty (注意到 ∞ \infty 其实也是 2 T = T − 1 2T = T - 1 2T=T1 的一组解)。

不幸的是,对于存在负数的无限数列,这一性质又不成立了。于是引出这样的定义:

首先,任意实数都可以被写作 x = x + − x − x = x^+ - x^- x=x+x,其中 x + = x × [ x &gt; 0 ] , x − = − x × [ x &lt; 0 ] x^+ = x \times [x &gt;0], x^- = -x \times [x &lt;0] x+=x×[x>0],x=x×[x<0]

于是,任意一个无限数列 a k a_k ak 就可以写成如下的形式:
∑ a k = ∑ a k + − ∑ a k − \sum a_k = \sum a_k^+ - \sum a_k^- ak=ak+ak
很明显, a k + a_k^+ ak+ a k − a_k^- ak 都是非负的无穷数列,因此可求和。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值