python小工具--将csv文件转化为图像

因为需要,有时需要分析csv文件里的图像数据,所以此时把csv文件转为为图像就显得很有必要,于是用python写了一个将csv文件转化为图像的小工具。这个工具是将fer2013.csv这个文件里的图像数据转化为图像,并分为七类保存。

语言环境:python3

系统环境:win7

import csv
import sys
import numpy as np
import pprint as pp
from PIL import Image
import matplotlib.pyplot as plt
import time
import os
image_number=[0,0,0,0,0,0,0]
couter_num=1
with open('fer2013.csv','r') as csvfile:
    pre_reader=csv.DictReader(csvfile)#直接生成一个pre_reader,用于迭代读出
    for reader in pre_reader:#迭代读出pre_reader里的数据
        x=reader["pixels"]#取出其中的像素点
        x=x.split()#split为分裂,x原来是一个字符串,用这个split后就分裂成字符串数组
#        print(x)
        
        arry = [int(i) for i in x ]#将x中一个个字符转化为int类型,arry是个int数组
#        print(arry)
#        print(type(arry[1]))
        
        result=np.array(arry)#生成np 的array
        result=result.reshape([48,48])#变成48*48的形状
#        pp.pprint(result)#显示一些转化后的结果
        image = Image.fromarray(result)#从数据,生成image对象
        image=image.resize([384,384],Image.ANTIALIAS)#抗锯齿的放大
        
                           
        
        plt.figure("test")#
        plt.imshow(image)#建立窗口
        plt.show()#显示图片
        time.sleep(2)#延时300ms

        
                           
                           
        
                    
#        image.show()#显示图片
        os.system("pause")
        number=reader["emotion"]#读出这张图片对应的表情标签
    #    print(number)
        name="/image"+str(image_number[int(number)])+".png"
        path=os.path.join("./fer2013/",number)#生成这个表情图片对应的路径
    #    print((path+name))
        print("正在保存%s类型表情%s"%(number,name))
        image_save=image.convert("L")#转化为灰度图片(这一步很关键,不然图片不能以png格式保存)
        image_save.save(path+name)#
        print("第%d保存成功!"%(couter_num))#显示已经保存了第几张
        image_number[int(number)]=image_number[int(number)]+1
        couter_num+=1
原始的fer2013.csv这个人脸表情数据集在这里可以下载(下载非常的慢 睡觉点击打开链接

LabelImg是一款流行的图像标注工具,它可以生成XML格式的标注文件,这些文件包含了图像中的物体边界框位置和类别信息。将LabelImg生成的XML文件转化CSV文件,可以通过编写脚本来实现,下面是一个简单的Python脚本示例,用于将XML格式的标注文件换为CSV文件: ```python import os import glob import pandas as pd from xml.etree import ElementTree as ET def convert(size, box): dw = 1. / size[0] dh = 1. / size[1] x = (box[0] + box[1]) / 2.0 y = (box[2] + box[3]) / 2.0 w = box[1] - box[0] h = box[3] - box[2] x = x * dw w = w * dw y = y * dh h = h * dh return (x, y, w, h) def convert_annotation(xml_file, csv_file): tree = ET.parse(xml_file) root = tree.getroot() size = root.find('size') w = int(size.find('width').text) h = int(size.find('height').text) with open(csv_file, 'w', newline='') as file: csv_file.write('filename,x1,y1,x2,y2,class\n') for member in root.findall('object'): bndbox = member.find('bndbox') xmin = int(bndbox.find('xmin').text) ymin = int(bndbox.find('ymin').text) xmax = int(bndbox.find('xmax').text) ymax = int(bndbox.find('ymax').text) class_name = member.find('name').text xy = convert((w, h), (xmin, ymin, xmax, ymax)) csv_file.write(f'{os.path.basename(xml_file)},{xy[0]},{xy[1]},{xy[2]},{xy[3]},{class_name}\n') # 假设xml_dir是包含所有XML标注文件文件夹路径,csv_dir是CSV文件保存的文件夹路径 xml_dir = 'path/to/xmls' csv_dir = 'path/to/csvs' # 获取所有XML文件的路径 xml_files = glob.glob(os.path.join(xml_dir, "*.xml")) # 遍历XML文件换为CSV格式 for xml_file in xml_files: csv_file = os.path.join(csv_dir, os.path.basename(xml_file)[:-3] + 'csv') convert_annotation(xml_file, csv_file) ``` 在使用上述脚本之前,请确保已经安装了`pandas`和`lxml`(用于解析XML文件)库。如果还没有安装,可以通过以下命令安装: ```bash pip install pandas lxml ``` 脚本中`convert_annotation`函数负责解析单个XML文件,并将其换为一行CSV格式的数据。然后,通过遍历一个包含所有XML文件文件夹,我们可以处理所有的图像标注文件
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值