因为需要,有时需要分析csv文件里的图像数据,所以此时把csv文件转为为图像就显得很有必要,于是用python写了一个将csv文件转化为图像的小工具。这个工具是将fer2013.csv这个文件里的图像数据转化为图像,并分为七类保存。
语言环境:python3
系统环境:win7
import csv
import sys
import numpy as np
import pprint as pp
from PIL import Image
import matplotlib.pyplot as plt
import time
import os
image_number=[0,0,0,0,0,0,0]
couter_num=1
with open('fer2013.csv','r') as csvfile:
pre_reader=csv.DictReader(csvfile)#直接生成一个pre_reader,用于迭代读出
for reader in pre_reader:#迭代读出pre_reader里的数据
x=reader["pixels"]#取出其中的像素点
x=x.split()#split为分裂,x原来是一个字符串,用这个split后就分裂成字符串数组
# print(x)
arry = [int(i) for i in x ]#将x中一个个字符转化为int类型,arry是个int数组
# print(arry)
# print(type(arry[1]))
result=np.array(arry)#生成np 的array
result=result.reshape([48,48])#变成48*48的形状
# pp.pprint(result)#显示一些转化后的结果
image = Image.fromarray(result)#从数据,生成image对象
image=image.resize([384,384],Image.ANTIALIAS)#抗锯齿的放大
plt.figure("test")#
plt.imshow(image)#建立窗口
plt.show()#显示图片
time.sleep(2)#延时300ms
# image.show()#显示图片
os.system("pause")
number=reader["emotion"]#读出这张图片对应的表情标签
# print(number)
name="/image"+str(image_number[int(number)])+".png"
path=os.path.join("./fer2013/",number)#生成这个表情图片对应的路径
# print((path+name))
print("正在保存%s类型表情%s"%(number,name))
image_save=image.convert("L")#转化为灰度图片(这一步很关键,不然图片不能以png格式保存)
image_save.save(path+name)#
print("第%d保存成功!"%(couter_num))#显示已经保存了第几张
image_number[int(number)]=image_number[int(number)]+1
couter_num+=1
原始的fer2013.csv这个人脸表情数据集在这里可以下载(下载非常的慢
)
点击打开链接