【AI系统】LLVM IR 基本概念

LLVM IR 基本概念

在上一篇文章中,我们已经简要介绍了 LLVM 的基本概念和架构,我们现在将更深入地研究 LLVM 的 IR(中间表示)的概念。

了解 LLVM IR 的重要性是为了能够更好地理解编译器的运作原理,以及在编译过程中 IR 是如何被使用的。LLVM IR 提供了一种抽象程度适中的表示形式,同时能够涵盖绝大多数源代码所包含的信息,这使得编译器能够更为灵活地操作和优化代码。

本文将进一步探究 LLVM IR 的不同表示形式,将有助于我们更好地理解代码在编译器中是如何被处理和转换的。

LLVM IR 概述

编译器常见的作用是将源高级语言的代码编译到某种中间表示(Intermediate Representation,一般称为 IR),然后再将 IR 翻译为目标体系结构(具体硬件比如 MIPS 或 X86)的汇编语言或者硬件指令。

LLVM IR 提供了一种抽象层,使程序员可以更灵活地控制程序的编译和优化过程,同时保留了与硬件无关的特性。通过使用 LLVM IR,开发人员可以更好地理解程序的行为,提高代码的可移植性和性能优化的可能性。

LLVM 基本架构

目前常见的编译器都分为了三个部分,前端(Frontend),优化层(Optimizeation)以及后端(Backend),每一部分都承担了不同的功能:

  • 前端:负责将高级源语言代码转换为 LLVM 的中间表示(IR),为后续的编译阶段打下基础。

  • 优化层:对生成的中间表示 IR 进行深入分析和优化,提升代码的性能和效率。

  • 后端:将优化后的中间表示 IR 转换成目标机器的特定语言,确保代码能够在特定硬件上高效运行。

这种分层的方法不仅提高了编译过程的模块化,还使得编译器能够更灵活地适应不同的编程语言和目标平台。同理,LLVM 也是按照这一结构设计进行架构设计:

在这里插入图片描述

在 LLVM 中不管是前端、优化层、还是后端都有大量的 IR,使得 LLVM 的模块化程度非常高,可以大量的复用一些相同的代码,非常方便的集成到不同的 IDE 和编译器当中。

经过中间表示 IR 这种做法相对于直接将源代码翻译为目标体系结构的好处主要有两个:

  1. 有一些优化技术是目标平台无关的,我们只需要在 IR 上做这些优化,再翻译到不同的汇编,这样就能够在所有支持的体系结构上实现这种优化,这大大的减少了开发的工作量。

  2. 其次,假设我们有 m 种源语言和 n 种目标平台,如果我们直接将源代码翻译为目标平台的代码,那么我们就需要编写 m * n 个不同的编译器。然而,如果我们采用一种 IR 作为中转,先将源语言编译到这种 IR ,再将这种 IR 翻译到不同的目标平台上,那么我们就只需要实现 m + n 个编译器。

值得注意的是,LLVM 并非使用单一的 IR 进行表达,前端传给优化层时传递的是一种抽象语法树(Abstract Syntax Tree,AST)的 IR。因此 IR 是一种抽象表达,没有固定的形态。

在这里插入图片描述

抽象语法树的作用在于牢牢抓住程序的脉络,从而方便编译过程的后续环节(如代码生成)对程序进行解读。AST 就是开发者为语言量身定制的一套模型,基本上语言中的每种结构都与一种 AST 对象相对应。

在中端优化完成之后会传一个 DAG 图的 IR 给后端,DAG 图能够非常有效的去表示硬件的指定的顺序。

DAG(Directed Acyclic Graph,有向无环图)是图论中的一种数据结构,它是由顶点和有向边组成的图,其中顶点之间的边是有方向的,并且图中不存在任何环路(即不存在从某个顶点出发经过若干条边之后又回到该顶点的路径)。

在计算机科学中,DAG 图常常用于描述任务之间的依赖关系,例如在编译器和数据流分析中。DAG 图具有拓扑排序的特性,可以方便地对图中的节点进行排序,以确保按照依赖关系正确地执行任务。

编译的不同阶段会产生不同的数据结构和中间表达,如前端的抽象语法树(AST)、优化层的 DAG 图、后端的机器码等。后端优化时 DAG 图可能又转为普通的 IR 进行优化,最后再生产机器码。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值