石子合并问题2——区间DP

分析:

区间动规一般都是三层for循环,需要注意的是区间用从小到大, 因为动态规划就是后面的用到前面的出的结果递推后面的结果。 dp[i][j] 表示从第 i 堆合并到第 j 堆的最小代价,sum[i][j] 表示第 i 堆到第 j 堆的石子总和。

动态转移方程:dp[i][j] = min(dp[i][j], dp[i][k] + dp[k + 1][j] + sum[i][j]) (i <= k <= j - 1)

import java.util.Scanner;

/**
 * @author Oxygen
 * @date 2018年9月1日
 */
public class Main {
	public static void main(String[] args) {
		Scanner scanner = new Scanner(System.in);
		int N = scanner.nextInt(); //石子有多少堆
		int[] data = new int[N];
		for (int i = 0; i < N; i++) {
			data[i] = scanner.nextInt();
		}
		int[][] dp = new int[N + 1][N + 1]; // dp[i][j] 表示从第 i 堆合并到第 j 堆的最小代价
		for (int i = 0; i < dp.length; i++) {
			for (int j = 0; j < dp[0].length; j++) {
				if (i == j) {
					dp[i][j] = 0;
				} else {
					dp[i][j] = Integer.MAX_VALUE;
				}
			}
		}
		int j = 0;
		for (int d = 1; d < N; d++) { // 前两层用来控制区间长度 
			for (int i = 1; i <= N - d; i++) {
				j = d + i;
				for (int k = i; k < j; k++) { // 最后一层用来枚举最后一次的位置
					dp[i][j] = Math.min(dp[i][j], dp[i][k] + dp[k + 1][j] + sum(data, i-1, j - 1));
				}
			}
		}
		System.out.println(dp[1][N]);
	}

	public static int sum(int[] arr, int i, int j) {
		int res = 0;
		for (int k = i; k <= j; k++) {
			res += arr[k];
		}
		return res;
	}

}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值