The frequent subset problem is defined as follows. Suppose UUU={1, 2,…\ldots…,N} is the universe, and S1S_{1}S1, S2S_{2}S2,…\ldots…,SMS_{M}SM are MMM sets over UUU. Given a positive constant α\alphaα, 0<α≤10<\alpha \leq 10<α≤1, a subset BBB (B≠0B \neq 0B≠0) is α-frequent if it is contained in at least αM\alpha MαM sets of S1S_{1}S1, S2S_{2}S2,…\ldots…,SMS_{M}SM, i.e. ∣{i:B⊆Si}∣≥αM\left | \left \{ i:B\subseteq S_{i} \right \} \right | \geq \alpha M∣{i:B⊆Si}∣≥αM. The frequent subset problem is to find all the subsets that are α-frequent. For example, let U={1,2,3,4,5}U=\{1, 2,3,4,5\}U={1,2,3,4,5}, M=3M=3M=3, α=0.5\alpha =0.5α=0.5, and S1={1,5}S_{1}=\{1, 5\}S1={1,5}, S2={1,2,5}S_{2}=\{1,2,5\}S2={1,2,5}, S3={1,3,4}S_{3}=\{1,3,4\}S3={1,3,4}. Then there are 333 α-frequent subsets of UUU, which are {1}\{1\}{1},{5}\{5\}{5} and {1,5}\{1,5\}{1,5}.
Input Format
The first line contains two numbers NNN and α\alpha α, where NNN is a positive integers, and α\alpha α is a floating-point number between 0 and 1. Each of the subsequent lines contains a set which consists of a sequence of positive integers separated by blanks, i.e., line i+1i + 1i+1 contains SiS_{i}Si, 1≤i≤M1 \le i \le M1≤i≤M . Your program should be able to handle NNN up to 202020 and MMM up to 505050.
Output Format
The number of α\alphaα-frequent subsets.
样例输入
15 0.4 1 8 14 4 13 2 3 7 11 6 10 8 4 2 9 3 12 7 15 2 8 3 2 4 5
样例输出
11
题目来源
解:比赛没看,后来说用状态压缩,看了一下相关知识,把每一个所给子集用二进制的方法存起来(用右移运算符),比如说全集为1,2,3,4;
那么如果给你的集合为1,3,4,你把(1<<1)+(1<<3)+(1<<4)存到一个数组里,相当于存了1101,从右到左表示1在,2不在,3在,4在,然后利用&运算性质便可求解;
代码如下:
#include <iostream>
#include <string.h>
#include <algorithm>
#include <math.h>
using namespace std;
int main()
{
int a[100];
memset(a,0,sizeof(a));
int i=0,n,ant=0,sum=0,k=0,v;
char c;
double m;
cin>>n>>m;
while (scanf("%d%c",&v,&c)!=EOF)
{
a[k]+=(1<<(v-1));
if (c=='\n')
k++;
}
int va=ceil(m*k);
for (int i=1;i<=(1<<n);i++)
{
for (int j=0;j<k;j++)
if ((i&a[j])==i)
sum++;
if (sum>=va)
ant++;
sum=0;
}
cout<<ant<<endl;
}