连续邮资问题(LDU回溯专题)

本文介绍了一种使用动态规划(DP)解决背包问题的方法。通过构建三维动态规划数组dp[i][j][k],该数组表示前i种物品选择j个是否可以凑成价值k。文章详细展示了如何初始化dp数组,并通过多层循环实现状态转移,最终找到连续的最大价值区间。
摘要由CSDN通过智能技术生成

这题过的少,先写个博客,增加波访问量

回溯,不存在的,写发dp吧,搞懂思想即可

dp[i][j][k],代表前i种数选j个是否可以凑成k,然后和背包一样乱搞一下就可以了,谨慎粘贴,以防查重

#include<iostream>
#include <algorithm>
#include <string.h>
#include <bits/stdc++.h>
using namespace std;
const int maxn=220;;
const int inf=0x3f3f3f3f;
int dp[60][60][3000];
int vis[3000],val[70];
int main()
{   
    int n,m;
    scanf("%d%d",&n,&m);
    for (int i=1;i<=n;i++)
        scanf("%d",&val[i]);
    sort(val,val+1+n);
    memset(dp,0,sizeof(dp));
    for (int i=1;i<=m;i++)
    {
        dp[1][i][i*val[1]]=1;
        vis[i*val[1]]=1;
    }
    for (int i=0;i<=n;i++)
        dp[i][0][0]=1;
    for (int i=2;i<=n;i++)
        for (int j=0;j<=m;j++)
            for (int k=0;k<=j;k++)
                for (int q=0;q<=m*val[n];q++)
                {
                    if (q-k*val[i]>=0)
                    {
                        dp[i][j][q]=dp[i][j][q]|dp[i-1][j-k][q-k*val[i]];
                        if (dp[i][j][q]) {vis[q]=1;/*cout<<q<<"!!!!"<<endl;*/}
                    }
                }
    int max_len=0,cnt,pos;
    for (int i=val[1];i<=val[n]*m;i++)
    {
        cnt=0;
        for(int j=i;j<=val[n]*m;j++)
        {
            if (vis[j]) cnt++;
            else
                break;
        }
        if (cnt>max_len)
        {
            pos=i;
            max_len=cnt;
        }
    }
    cout<<pos<<" "<<pos+max_len-1<<endl;
    return 0;
}

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值