本内容源于秦静老师的《线性代数》mooc,古之有云:学而不思则罔,思而不学则殆。
主要讲解,思、学、罔、殆。
思:“田”
行列式目录
1.行列式概念
行列式概念起源于为了解决线性方程组求解,掌握这个概念,会二阶行列式对角线展开法,三阶行列式也会展开,也算行列式能基本入门了。
这类题目,也属于这种行列式展开的题目。
2.n阶行列式
三阶行列式我们会用对角线展开了,但是到n阶行列式,还能用对角线展开吗?不能,老师就讲到按照行列展开进行计算,也就是代数余子式。余子式与代数余子式的区别。
代数余子式就是在余子式的基础上有那个(-1)^(i+j)次。下面按照行列式行列展开就可以得出n阶行列式的定义
然后秦静老师的课后作业也非常应景,
也就是把我上面哪个D背出就行啦。
3.特殊行列式的计算
3.1对角行列式
行列式的值a11a22…ann
3.2上(下)三角行列式
下三角可以按照行列式第一行展开,上三角可以按照行列式最后一行展开。答案都是:
a11a22....ann
3.3 斜三角行列式
^2
4.行列式的性质
- (性质1)行列式转置的值等于行列式的值
- (性质2)互换两行,行列式变号
- (推论)行列式中有两行元素完全相同,则行列式为0
- (性质3)用数k乘行列式某一行中所有元素,等于用k乘行列式
- (推论)某一行的所有元素的公因子可以提到行列式符号的外面。
- (性质4)行列式某一行元素加上另一行对应元素的k倍,行列式的值不变。
- (性质5)若行列式某一行的元素是两数之和,则行列式可拆成两个行列式的和。
- (推论)若行列式某一行的元素都是m个元素的和,则行列式可以写成m个行列式的和。
到后面我们做初等行变换会用到粗体的三个。
按照行列式的定义可以脱口而出i=j等于D,i≠j等于0。2和3本质相同都是i≠j。
5.行列式的计算
我们学会用基本的技巧就是可以为了更好的展开
6.克莱姆法则
克莱姆法则有三个结论,分别是当D≠0时,方程组有解,有唯一解,解是D1/D,D2/D…以此类推。讲到齐次线性方程组时,就是搞明白零解与非零解。D≠0,方程组有唯一0解。D=0,方程有非零解。为什么分零解和非零解,因为非零解换句话就是无穷解!
7.范德蒙行列式
探到范德蒙行列式,了解它长什么样子。
这是解的形式,
练习1
把它转置一下,然后按着第二行开始进行做运算
(1-2)(3-2)(4-2)(3-1)(4-1)(4-3)=-12
练习2
(b-a)(c-a)(c-b)
8.逆序数与行列式
从逆序数来重新认识行列式,这是很旧的书才会讲的,如果要了解逆序数,那就必须先要了解逆序。逆序就是在一个标准顺序情况下,两个元素顺序如果不同,那么这两个元素就构成了逆序。而逆序数就是去求解所有元素逆序相加和。然后就倒出逆序数了。
要重新理解行列式,那就肯定涉及这个:
这就是逆序数对行列式的重新构造。