中心差商公式不同的h计算近似一(二)阶导数

本博文源于matlab中的数值微分,只在使用一阶和二阶中心差商公式来求函数的近似一阶和二阶导数

问题:求y=4x^2+3sinx在x=1处近似一(二)阶导数值

下面我们进行分步骤解决此问题

一阶二阶中心差商公式

一阶:
在这里插入图片描述
二阶:
在这里插入图片描述

编写matlab代码

思路如下,

  • 首先计算一阶二阶导数非数值解的值
  • 然后计算f(x+h),f(x),f(x-h)
  • 最后套一阶,二阶公式进行计算
>> x=1;
>> dy_1=8*x+3*cos(x)

dy_1 =

    9.6209

>> dy_2=8-3*sin(x)

dy_2 =

    5.4756

>> h=[0.1 0.01 0.001 0.0001];
>> x1=x+h;
>> x2=x-h;
>> y=3*sin(x)+4.*x.^2;
>> y1=3*sin(x1)+4.*x1.^2;
>> y2=3*sin(x2)+4.*x2.^2;
>> ysw_1=(y1-y2)./(2*h);

>> ysw_1

ysw_1 =

   9.61820675650928   9.62087990262419   9.62090664745263   9.62090691489781

>> ysw_2=(y1+y2-2.*y)./(h.^2);



>> ysw_2

ysw_2 =

   5.47769002193785   5.47560808227487   5.47558725649822   5.47558709484974

>> 

获取结果,解决问题

通过matlab编写代码,发现不同的h会有不同的精度的值,h步长越小,越趋于精确值。其中ysw_1就是1阶导数近似值,ysw_2是二阶导数近似值,大家可以跟非数值解进行对比,发现确实更精准!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值