本博文源于matlab对正太概率图的绘制.
正态概率图函数讲解
normplot(x)
x就是待分析的数据,用于图形化检验正态性,当x是矩阵时,对每一列显示一条直线;h返回直线的句柄。
例子:随机生成数据,绘制正态概率图
实验步骤及代码
- 生成正态分布数据
- 生成均匀分布数据
- 绘制正态概率图
>> M = 100;
>> N = 1;
>> x = normrnd(0,1,M,N);%生成服从N(0,1)的正态分布数据
>> y = rand(M,N); % 生成均匀分布的数据
>> z = [x,y];
>> h = normplot(z);
>> xlabel('数据');
>> ylabel('概率');
>> title('正态概率图');
>> legend('正态分布数据','均匀分布数据');
>> grid on;
>>
实验效果
在正态概率图中有3个图形元素:“+"号表示每一-个样本点数值的经验概率:实线连接了数据的第25个和第75个百分点,表示一个线性拟合:
点画线将实线延伸到样本的两端。在正态概率图中,如果所有的样本点都在实线附近,则假设样本服从正态分布是合理的;否则,如果样本不是正态分布的, 则“+”号构成了一条曲线。通过观察图的两种不同分布样本的概率图可以验证这一-点。