matlab用normplot绘制正态概率图

本文介绍如何使用Matlab的normplot函数绘制正态概率图,通过对比正态分布和均匀分布数据的图形,直观地检验数据的正态性。生成随机数据,绘制并分析正态概率图。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本博文源于matlab对正太概率图的绘制.

正态概率图函数讲解

normplot(x)

x就是待分析的数据,用于图形化检验正态性,当x是矩阵时,对每一列显示一条直线;h返回直线的句柄。

例子:随机生成数据,绘制正态概率图

实验步骤及代码

  • 生成正态分布数据
  • 生成均匀分布数据
  • 绘制正态概率图
>> M = 100;
>> N = 1;
>> x = normrnd(0,1,M,N);%生成服从N(0,1)的正态分布数据
>> y = rand(M,N); % 生成均匀分布的数据
>> z = [x,y];
>> h = normplot(z);
>> xlabel('数据');
>> ylabel('概率');
>> title('正态概率图');
>> legend('正态分布数据','均匀分布数据');
>> grid on;
>> 

实验效果

在这里插入图片描述
在正态概率图中有3个图形元素:“+"号表示每一-个样本点数值的经验概率:实线连接了数据的第25个和第75个百分点,表示一个线性拟合:
点画线将实线延伸到样本的两端。在正态概率图中,如果所有的样本点都在实线附近,则假设样本服从正态分布是合理的;否则,如果样本不是正态分布的, 则“+”号构成了一条曲线。通过观察图的两种不同分布样本的概率图可以验证这一-点。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值