matlabqq(Quantile-Quantile)图绘制并讲解

本文详细介绍Matlab中QQ图的绘制方法及其在样本分布检验中的应用。通过两个实例,一是正态分布与均匀分布的对比,二是两个正态分布的对比,展示了如何使用qqplot函数,并解释了直线形状对分布一致性的指示作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本博文源于matlab对qq图的绘制。qq图全称为Quantile-Quantile图。可用于检验两个样本是否来自于同一分布,其函数为qqplot。其调用格式如下

调用格式

qqplot(x)
qqplot(x,y)
h = qqplot(...)

qqplot函数用于显示一个或两个样本的Quantile-Quantile图。如果x是正态分布的。则qqplot(x)近似于直线;如果x,y来自于同一分布,则qqplot(x,y)是一条直线,x,y是分析的样本,h为返回直线的句柄

例子:绘制两张图,一张图为正态分布与均匀分布的检验QQ图,另一张图为两个正态分布的检验QQ图

实验步骤

  • 生成图形1的句柄
  • 生成正态分布数据,生成均匀分布数据
  • 绘制qq图
  • 增加基本样式
  • 生成图形2的句柄
  • 生成正态分布的数据两份
  • 绘制qq图
  • 增加基本样式

代码:

>> M=100;N=1;
>> x=normrnd(0,1,M,N);
>> y=rand(M,N);
>> z=[x,y];
>> figure(1);
>> h1 = qqplot(z);
>> xlabel('标准正态样本的Quantile');
>> ylabel('输入样本的Quantile');
>> title('Quantile-Quantile图');
>> legend('正态分布数据','均匀分布数据');
>> grid on;
>> %生成两个正态分布样本
>> x=normrnd(0,1,100,1);
>> y=normrnd(0.5,2,50,1);
>> figure(2);
>> h2=qqplot(x,y);
>> xlabel('输入样本x的Quantile');
>> ylabel('输入样本y的Quantile');
>> title('Quantile-Quantile图');
>> grid on;
>> 

实验效果

在这里插入图片描述
左边图1,右边图2.这就是传说中用图形进行检验。需要注意的是,因为左边图1是两种不同分布,所以它的直线比较弯曲,而右边较为笔直。

matlab编程,太阳地球月亮公转自转,球体贴,基于matlab的仿真,实现了太阳的自转以及地球月球的自转公转。 k=6; n = 2^k-1; [x,y,z]=sphere(n ); A = imread('taiyang.png'); patches0=surf2patch(x,y,z,A); k=6; n = 2^k-1; [x,y,z]=sphere(n ); AA = imread('diqiu00.png'); patches1=surf2patch(x,y,z,AA); k=6; n = 2^k-1; [x,y,z]=sphere(n ); AAA = imread('yueqiu.png'); patches2=surf2patch(x,y,z,AAA); %set(patches,'edgecolor','none') % 设计太阳月亮地球的相对大小 Ssun=1; Searth=0.4; Smoon=0.2; % 设置太阳与地球间的距离 Res=4; % 设置地球与月亮之间的距离 Rme=1; alpha=0; beta=0; theta=0; % 设置旋转速度 step_a=0.1; %a的步长 step_b=0.2; %b的步长 step_t=0.05; %c的步长 % 设置太阳的位置 Csun=[0,0,0]; % 计时器 time=0; h=figure; % 取消坐标轴之类的属性 set(h,'toolbar','none','menubar','none','numbertitle','off') % 进入大循环 while 1==1 clf % 设置地球的位置 Cx=4*cos(alpha); Cy=4*sin(alpha); Cz=0; Cearth=[Cx,Cy,Cz]; Cmoon=[Cx+cos(2*alpha);Cy+sin(2*alpha);0;1]; patches_sun=patches0; % 绕z轴旋转坐标公式 Rz=[cos(5*theta) -sin(5*theta) 0;sin(5*theta) cos(5*theta) 0;0 0 1]; [len]=64*64; for i=1:len P=Rz*[patches0.vertices(i,1);patches0.vertices(i,2);patches0.vertices(i,3)]; patches_sun.vertices(i,1)=P(1); patches_sun.vertices(i,2)=P(2); patches_sun.vertices(i,3)=P(3); end patch(patches_sun),shading flat,hold on patches_moon=patches2; [len,t]=size(patches2.vertices); for i=1:len P=Rz*[patches2.vertices(i,1)*Smoon;patches2.vertices(i,2)*Smoon;patches2.vertices(i,3)*Smoon]+[Cmoon(1);Cmoon(2);Cmoon(3)]; patches_moon.vertices(i,1)=P(1); patches_moon.vertices(i,2)=P(2); patches_moon.vertices(i,3)=P(3); end patch(patches_moon),shading flat % 与改变太阳顶点值一致,改变地球的顶点值 patches_earth=patches1; [len,t]=size(patches1.vertices); for i=1:len P=Rz*[patches1.vertices(i,1)*Searth;patches1.vertices(i,2)*Searth;patches1.vertices(i,3)*Searth]+[Cx;Cy;Cz]; patches_earth.vertices(i,1)=P(1); patches_earth.vertices(i,2)=P(2); patches_earth.vertices(i,3)=P(3); end patch(patches_earth),shading flat daspect([1,1,1]); campos([7,7,2]),camtarget([0,0,0]),camup([0,0,1]),camva(30), % 关闭所有的坐标轴标签、刻度、背景 axis off %set(patches,'edgecolor','none') % 暂停0.1秒 pause(0.1) % 记时+1 time=time+1; % 太阳地球月亮一次改变的数值 beta=beta+step_b; alpha=alpha+step_a; theta=theta+step_t; end
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值