Python中作Q-Q图(quantile-quantile Plot)

Q-Q图用于判断两组数据是否来自同一分布及尺度是否一致。通过比较数据集的百分位数,若点靠近45度参考线则分布相似。Python中使用numpy和scipy库可方便计算和拟合Q-Q图。本文示例显示数据分布形状不同但尺度接近。同时提及,若检验特定分布,如正态分布,可使用scipy.stats.probplot。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Q-Q图主要可以用来回答这些问题:

  1. 两组数据是否来自同一分布
    PS:当然也可以用KS检验,利用python中scipy.stats.ks_2samp函数可以获得差值KS statistic和P值从而实现判断。
  2. 两组数据的尺度范围是否一致
  3. 两组数据是否有类似的分布形状
    前面两个问题可以用样本数据集在Q-Q图上的点与参考线的距离判断;而后者则是用点的拟合线的斜率判断。

用Q-Q图来分析分布的好处都有啥?(谁说对了就给他)

  1. 两组数据集的大小可以不同
  2. 可以回答上面的后两个问题,这是更深入的数据分布层面的信息。

那么,Q-Q图要怎么画呢?
将其中一组数据作为参考,另一组数据作为样本。样本数据每个值在样本数据集中的百分位数(percentile)作为其在Q-Q图上的横坐标值,而该值放到参考数据集中时的百分位数作为其在Q-Q图上的纵坐标。一般我们会在Q-Q图上做一条45度的参考线。如果两组数据来自同一分布,那么样本数据集的点应该都落在参考线附近;反之如果距离越远,这说明这两组数据很可能来自不同的分布。

python中利用scipy.stats.percentileof

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值