求逆元

参考的博客:http://blog.csdn.net/guhaiteng/article/details/52123385

1欧几里得扩展求逆元

乘法逆元

对于缩系中的元素,每个数a均有唯一的与之对应的乘法逆元x,使得ax≡1(mod n) 一个数有逆元的充分必要条件是gcd(a,n)=1,此时逆元唯一存在  逆元的含义:模n意义下,1个数a如果有逆元x,那么除以a相当于乘以x。

给定模数m,求a的逆相当于求解ax=1(mod m)
这个方程可以转化为ax-my=1 

我们要求的是x,那么根据欧几里得扩展化为ax-my=gcd(a,m)的方程求一组解(x,y)

而如果gcd(a,m)==1才有逆元,否则没有

下面我们来证明一个结论:gcd(a,b)==gcd(b,a%b);//这也是辗转相除法求最大公约数的根本

设两数为a、b(a>b),用gcd(a,b)表示a,b的 最大公约数,r=a (mod b) 为a除以b的余数,k为a除以b的商,即a÷b=k .......r。辗转相除法即是要证明gcd(a,b)=gcd(b,r)。
第一步:令c=gcd(a,b),则设a=mc,b=nc
第二步:根据前提可知r =a-kb=mc-knc=(m-kn)c
第三步:根据第二步结果可知c也是r的因数
第四步:可以断定m-kn与n 互质(假设m-kn=xd,n=yd (d>1),则m=kn+xd=kyd+xd=(ky+x)d,则a=mc=(ky+x)cd,b=nc=ycd,则a与b的一个公约数cd>c,故c非a与b的最大公约数,与前面结论矛盾),因此c也是b与r的最大公约数。
从而可知gcd(b,r)=c,继而gcd(a,b)=gcd(b,r)。
证毕。
以上步骤的操作是建立在刚开始时r≠0的基础之上的。即m与n亦互质。

我们再引入扩展欧几里得定理:

定理:对于不完全为 0 的非负整数 a,b,
gcd(a,b)表示 a,b 的最大公约数,必然存在无数组整
数对 x,y ,使得 gcd(a,b)=ax+by。

所以我们可以得出:

a*x1+b*y1==gcd(a,b); b*x2+(a%b)*y2==gcd(a,b); ==> a*x1+b*y1==b*x2+(a%b)*y2;

a*x1+b*y1==b*x2+a*y2-k*b*y2; ==> a*x1+b*y1==a*y2+b*(x2-k*y2);

x1=y2;

y1=x2-k*y2;

我们要求的逆元是x1,怎么求?

我们很容易知道

an*xn+0*yn=gcd(an,0)==an; xn=1; yn=0;

所以用xn,yn倒推出x1,y1;

公式为:

x(n-1)=yn;

y(n-1)=xn-k*yn;

下面是代码实现:

typedef  long long ll;  
void extgcd(ll a,ll b,ll& d,ll& x,ll& y){  
    if(!b){ d=a; x=1; y=0;}  
    else{ extgcd(b,a%b,d,y,x); y-=x*(a/b); }  
}  
ll inverse(ll a,ll n){  
    ll d,x,y;  
    extgcd(a,n,d,x,y);  
    return d==1?(x+n)%n:-1;  
}

 x+=mod是因为求出的x可能小于0

2.费马小定理:

在模为素数p的情况下,有费马小定理  a^(p-1)=1(mod p)  那么a^(p-2)=a^-1(mod p)  也就是说a的逆元为a^(p-2)

而在模不为素数p的情况下,有欧拉定理  a^phi(m)=1(mod m) (a⊥m,a和m互质)  同理a^-1=a^(phi(m)-1)

因此逆元x便可以套用快速幂求得了x=a^(phi(m)-1)

但是似乎还有个问题?如何判断a是否有逆元呢? 

检验逆元的性质,看求出的幂值x与a相乘是否为1即可

PS:这种算法复杂度为O(log2N)在几次测试中,常数似乎较上种方法大

当p比较大的时候需要用快速幂求解

代码实现:

 1 typedef  long long ll;  
 2 ll pow_mod(ll x, ll n, ll mod){  
 3     ll res=1;  
 4     while(n>0){  
 5         if(n&1)res=res*x%mod;  
 6         x=x*x%mod;  
 7         n>>=1;  
 8     }  
 9     return res;  
10 }  

 

当模p不是素数的时候需要用到欧拉定理
a^phi(p) ≡1               (mod p)
a*a^(phi(p)-1)≡1      (mod p)
a^(-1)≡a^(phi(p)-1)  (mod p)
所以 aϕ(m)1a 时间复杂度O(n√)即求出单个欧拉函数的值
(当p为素数的时候phi(p)=p-1,则phi(p)-1=p-2可以看出欧拉定理是费马小定理的推广)
PS:这里就贴出欧拉定理的板子,很少会用欧拉定理求逆元
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值