RMQ算法全称为(Range Minimum/Maximum Query)意思是给你一个长度为n的数组A,求出给定区间的最值的下标。当然我们可以采用枚举,但是我们也可以使用线段树来优化,复杂度为(nlogn),但是最好的办法是采用Sparse_Table算法,简称ST算法。他能在进行(nlogn)的预处理后达到n(1)的效率。下面来分析下最大值和最小值,都要用到DP的思想。
最小值(Mininun):我们可以用F(i,j)表示区间[i,i+2^j-1]间的最小值。我们可以开辟数组来保存F(i,j)的值,例如:F(2,4)就是保存区间[2,2+2^4-1]=[2,17]的最小值。那么F(i,0)的值是确定的,就为i这个位置所指的元素值,这时我们可以把区间[i,i+2^j-1]平均分为两个区间,因为j>=1的时候该区间的长度始终为偶数,可以分为区间[i,i+2^(j-1)-1]和区间[i+2^(j-1)-1,i+2^j-1],即取两个长度为2^(j-1)的块取代和更新长度为2^j的块,那么最小值就是这两个区间的最小值的最小值,动态规划为:F[i,j]=min(F[i,j-1],F[i+2^(j-1)-1,j-1]).同理:最大值就是F[i,j]=max(F[i,j-1],F[i+2^(j-1)-1,j-1]).
因为我们把区间分成相同的两部分有i+2^(j-1)-1这个点重复了,我们也可以这样写F[i,j]=min(F[i,j-1],F[i+2^(j-1),j-1]).同理:最大值就是F[i,j]=max(F[i,j-1],F[i+2^(j-1),j-1]).
现在求出了F[i,j]之后又是怎样求出最大值或者最小值的,怎么转换为o(1)这种算法的~这就是ST算法:
这个时候询问时只要取k=ln(j-i+1)/ln2即可,那么可以令A为i到i+2^k-1长度为2^k的块,和B为j-2^k+1到j-2^k+1+2^k-1的长度为2^k的块;那么A,B都是区间[i,j]的子区间,所以即求A区间的最小值和B区间的最小值的最小值。这个时候动态规划为:RMQ(i,j)=min(F[i,k],F[j-2^k+1,k]);
代码模板:
void RMQ()
{
int i,k;
for(i=1;i<=n;i++)
f[i][0]=a[i];
for(k=1;k<=20;k++)
for(i=1;i<=n;i++)
if(i + (1 << k)-1<=n)
f[i][k]=GCD(f[i][k-1],f[i+(1<<(k-1))][k-1]);
}
int query(int l,int r)
{
int k=(int)(log(r-l+1.0)/log(2.0));
return GCD(f[l][k], f[r - (1 << k) +1][k]);
}