自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(18)
  • 资源 (1)
  • 收藏
  • 关注

转载 ROC和AUC

ROC和AUC

2019-03-26 20:25:33 139

原创 C++学习笔记

C++学习笔记预编译指令:以“#”开头,是发给编译器的命令,编译源代码之前完成。“#inlcude”指令用于在编译之前将指定的文件嵌入该指令所在的位置。两种方式:“""”:预处理器首先在当前目录下搜索这个文件,若不存在,则继续在项目的包含目录下搜索。“<>”预处理器直接在项目的包含目录下搜索。编译器和链接器:源文件:.cpp目标文件:一般为.obj。linux下为.o预处理...

2019-03-22 15:08:45 169

转载 GIL(全局解释器)

GIL分析GIL全局解析器锁python面试不得不知道的点——GIL

2019-03-03 10:42:28 202

原创 深度学习优化

深度学习优化局部最优鞍点梯度悬崖梯度消失梯度爆炸梯度不精确优化算法随机梯度下降动量学习法AdaGradRMSPropAdam参数初始化策略批量归一化挑战:局部最优、鞍点、梯度悬崖和梯度消失局部最优并不是找到全局最优点。局部最优点也可以,泛化性能也通常比最优解好。鞍点梯度悬崖这是由于几个较大的权重相乘导致的梯度消失解决:ReLU梯度爆炸如果上层的权重过大,当经过传递后,本层的梯度...

2019-03-01 20:59:51 318

原创 深度学习正则化

深度学习正则化参数范数惩罚L2参数正则化L1参数正则化参数绑定和参数共享噪声注入和数据扩充稀疏表征早停dropout参数范数惩罚L2参数正则化L1参数正则化L1正则化的限制更为严格,也就更加的稀疏。稀疏性的一大好处就是特征选择。参数绑定和参数共享噪声注入和数据扩充稀疏表征L1是参数稀疏表征稀疏:隐藏层的输出大多数为零或接近零早停dropout...

2019-02-28 13:39:21 302

原创 激活函数

激活函数为什么需要非线性激活函数?Sigmoid神经元Tanh 神经元ReLU神经元Maxout单元SoftPlus激活函数为什么需要非线性激活函数?Sigmoid神经元缺点:易饱和性,当输入值非常大或者非常小的时候,这些神经元的梯度就接近于0.输出的期望不是0函数的定义为:f(x)=11+e−x f(x) = \frac{1}{1 + e^{-x}} f(x)=1+e−x1​,其值域...

2019-02-28 09:59:28 269

原创 anaconda在linux环境中的安装和使用

anaconda在linux环境中的安装和使用1.anaconda安装1.anaconda安装下载anaconda下载连接安装下载完成后在安装包的同级目录中运行命令:然后一路yes,完成安装验证输入命令:anaconda...

2019-01-24 17:35:50 5762

原创 《统计学习方法》第5章 决策树

《统计学习方法》第5章 决策树5.1 决策树模型的学习5.1.1 决策树模型5.1.2 决策树与if-then规则5.1.3 决策树与条件概率分布5.1.4 决策树学习5.2 特征选择基本的分类和回归方法在分类问题中,表示基于特征对实例进行分类的过程。if-then规则的几何,或定义在特征空间与类空间上的条件概率分布优点:可读性和分类速度快损失函数最小化的原则建立决策树模型三个步骤:特...

2019-01-17 21:10:26 257

原创 《统计学习方法》第4章朴素贝叶斯法

《统计学习方法》第4章 朴素贝叶斯法4.1朴素贝叶斯法的学习与分类4.1.1基本方法4.1.2后验概率最大化的含义朴素贝叶斯(naive Bayes)法是基于贝叶斯定理与特征条件独立假设的分类方法。对于给定的数据集,首先根据特征条件独立假设学习输入/输出的联合概率分布;然后基于此模型,对给定的输入x,利用贝叶斯定理求出后验概率最大的输出y。4.1朴素贝叶斯法的学习与分类4.1.1基本方法...

2019-01-16 22:07:37 277

原创 《统计学习方法》第三章k近邻法

《统计学习方法》第三章 k近邻法3.1 k近邻算法k近邻模型3.2.1 模型3.2.2 距离度量3.2.3 k值的选择3.2.4 分类决策规则3.3 k近邻法的实现:kd树k近邻法(k-nearest neighbor, k-NN)是一种基本的分类与回归方法。可以进行多类的分类。k近邻法不具有显式的学习过程,利用训练数据集对特征向量空间进行划分。三个基本要素:k值的选择、距离度量和分类决策规...

2019-01-13 22:08:56 236

原创 《统计学习方法》第二章 感知机

《统计学习方法》第二章 感知机2.1感知机模型2.2 感知机学习策略2.3 感知机学习算法2.3.1 感知机学习算法的原始形式2.3.2 算法的收敛性感知机学习算法的对偶形式2.1感知机模型感知机(perceptron):二类分类的线性分类模型,属于判别模型。(神经网络与支持向量机的基础)。感知机学习旨在求出将训练数据进行线性化分的分离超平面。几何解释:线性方程:w*x+b=0.对应...

2019-01-13 20:04:41 193

原创 《统计学习方法》第1章 统计学习方法概论 1.3 统计学习的三要素

《统计学习方法》第1章 统计学习方法概论1.3统计学习的三要素1.3统计学习的三要素方法=模型+策略+算法

2019-01-12 11:24:45 230

原创 码云使用方法

码云使用方法1.本地初始化一个项目2.完成第一次提交1.本地初始化一个项目//git的基础配置,告诉git用户信息git config --global user.namegit config --global user.email//在需要初始化版本库的文件夹中执行以下命令git initgit remote add origin &amp;lt;项目地址&amp;gt; //注:项目地址形式为...

2019-01-11 14:13:59 582

原创 《统计学习方法》第1章 统计学习方法概论 1.2 监督学习

得分

2019-01-08 20:58:25 214

原创 《统计学习方法》第1章 统计学习方法概论 1.1 统计学习

《统计学习方法》第一章 统计学习方法概论1.1 统计学习1.统计学习的特点2.统计学习的对象3.统计学习的目的4.统计学习的方法5.统计学习的研究6.统计学习的重要性1.1 统计学习1.统计学习的特点统计学习: 计算机基于数据构建概率统计模型并运行模型对数据进行预测与分析的一门学科,也成为统计机器学习(statistical machine learning)。主要特点:(1)与计算机...

2019-01-08 20:55:28 345

原创 Django 对已存在的model进行更改

1.删除app下的migrations中的数据库操作的.py记录2.删除数据库django_migrations中相应记录3.python manage.py makemigrations yourappname4. python manage.py migrate yourappname

2018-08-25 09:32:51 2285

原创 Django安装mysqlclient

更新pip, easy_install -U pip安装mysqlclient  安装下载好的mysqlclient-1.3.13-cp35-cp35m-win_amd64.whl https://www.lfd.uci.edu/~gohlke/pythonlibs/#lxml 

2018-08-25 09:28:31 222

原创 PyCharm使用Anaconda中的tensorflow

一 .粗略流程File-&gt;setting-&gt;Project:项目名-&gt;Project Interpreter-&gt;add-&gt;Conda Environment-&gt;Existing environment-&gt;python.exe

2018-08-16 10:27:54 1209

pytorch-1.1.0-cudo10.0+torchvision--pip安装.rar

内涵文件torch-1.1.0-cp36-cp36m-win_amd64.whl和torchvision-0.3.0-cp36-cp36m-win_amd64.whl

2019-06-27

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除