激活函数

为什么需要非线性激活函数?

在这里插入图片描述

Sigmoid神经元

缺点:易饱和性,当输入值非常大或者非常小的时候,这些神经元的梯度就接近于0.
输出的期望不是0
函数的定义为: f ( x ) = 1 1 + e − x f(x) = \frac{1}{1 + e^{-x}} f(x)=1+ex1,其值域为 ( 0 , 1 ) (0,1) (0,1)
在这里插入图片描述hard_sigmoid:计算速度比sigmoid快

Tanh 神经元

和sigmoid相比函数期望为0
函数的定义为: f ( x ) = t a n h ( x ) = e x − e − x e x + e − x f(x) = tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} f(x)=tanh(x)=ex+exexex,值域为 ( − 1 , 1 ) (-1,1) (1,1)
缺点:易饱和
在这里插入图片描述

ReLU神经元

修正线性单元(Rectified Linear Units)
0处不可导。解决:返回Relu一边的导数
函数的定义为: f ( x ) = m a x ( 0 , x ) f(x) = max(0, x) f(x)=max(0,x) ,值域为 [ 0 , + ∞ ) [0,+∞) [0,+)
缺点:但神经元没有激活时,将永远无法修改其权重。
在这里插入图片描述
变体:
绝对值修正单元(Absolute Value Rectification):
裂缝修正单元(Leaky ReLU):
函数定义为: f ( x ) = { a x , x &lt; 0 x , x &gt; 0 f(x) = \begin{cases} ax, \quad x&lt;0 \\ x, \quad x&gt;0 \end{cases} f(x)={ax,x<0x,x>0,值域为 $ (-∞,+∞) 。 图 像 如 下 ( 。 图像如下( a = 0.5 )
在这里插入图片描述

Maxout单元

缺点:加重了训练的负担

SoftPlus激活函数

函数的定义为: f ( x ) = l n ( 1 + e x ) f(x) = ln( 1 + e^x) f(x)=ln(1+ex),值域为 ( 0 , + ∞ ) (0,+∞) (0,+)
在这里插入图片描述

elu线性指数激活

在这里插入图片描述

selu可伸缩的指数线性单元

在这里插入图片描述

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值