- 博客(683)
- 资源 (5)
- 收藏
- 关注
原创 VMware Live Recovery 和 VMware Data Recovery区别
VMware Live Recovery 和 VMware Data Recovery 是 VMware 推出的两款不同的数据保护工具,核心定位和功能差异显著。
2025-05-26 20:38:42
196
原创 petct原理
:通过给人体注射一种显像剂,放射性核素发射的正电子在很短的距离内与人体组织中的负电子碰撞发生“湮灭”,释放出一对方向相反能量相同的γ(伽玛)射线,利用PET设备探测和计录这些γ射线再通过计算机处理,就能呈现出这种放射性药物在人体内的分布和密集程度,从而反应疾病的状态。】,通常,代谢比较强的组织细胞,会更爱吃糖,癌细胞正是这样的情况。:将X射线以窄束的形式对人体进行断层扫描,有点像切土豆薄片,根据不同组织对X射线的吸收程度不同,经过一系列复杂的计算、处理,形成灰度不同的影像,描绘出人体的组织结构;
2025-05-19 15:08:26
406
原创 vmware workstation 安装esxi ,ip 设置192.168.10.4, 网络中心 vmnet8 ip 网关也是同一个网段,但是浏览器打不开ip 地址
在 VMware Workstation 中安装 ESXi 后无法通过浏览器访问管理界面(192.168.10.4),可能是由于网络配置问题导致的。vmware workstation 安装esxi ,ip 设置192.168.10.4, 网络中心 vmnet8 ip 网关也是同一个网段,但是浏览器打不开ip 地址。如果 ping 通但浏览器无法访问,可能是 ESXi 服务未启动或端口问题。(注意是 HTTPS,ESXi 默认使用 443 端口)。(Bridged),并分配同一网段的 IP 测试。
2025-03-31 18:47:34
960
原创 stable diffusion 文生图流程
Dreambooth unet 整个微调,所以保存模型的时候都保存比较大Lora 是加入一些层,改变unet 的一些层的输出,所以元模型保留后,只是保存很小的lora添加层,使用是lora 层加原模型Controlnet, 也是新增加一个额外的网络结构 调整unet扩散过程的核心逻辑扩散模型通过逐步去噪生成图像,整个过程类似"从随机噪声中雕刻出图像"。初始化:从纯噪声开始(迭代去噪:UNet逐步预测并去除噪声(循环50~100次)最终解码:去噪后的潜空间通过VAE解码为图像。
2025-02-13 19:40:30
1451
原创 并行云使用流程,环境安装pytorch
是一种环境管理工具,用于在共享计算(如高性能计算集群或其他云环境)中管理加载和依赖项的加载和卸载。它常用于集群环境,尤其是在没有。module load miniforge之后就可以使用conda配置环境了。的情况下,通过自定义的方式简化用户对不同版本软件的访问。使用集群管理命令 module。
2025-01-07 16:29:19
396
原创 奔图bentu 打印机,办公室无线连接
第三步运行驱动,选择第一个,wifi 进行驱动安装,或者选择usb 线连接进行安装。第二步 链接办公室的打印机wifi(链接后没有网络)安装完成后,就可以点击打印找到这个打印设备。
2024-12-23 10:21:38
394
原创 transformer,vit
2、layernormal, 每个图片,一句话使用行的方式切分,更适用于长度不一致的时候(会用0填充成同样长度),batch normal ,切分就会有很多0,情况出现。1、batchnormal ,多个样本的通道,做均值方差。
2024-09-03 10:57:39
219
原创 使用labelstudio 进行检测结果预先标注,导入到labelstudio中
所有的图片预测结果,写入到一个json 中,不是一个图片写一个json,如下格式,包含的字段需要有"predictions",“data”,ui 界面上 直接import 该json文件,会自动加载所有的图片+对应的预测结果。然后labelstudio ,配置好图片路径的设置(图片路径能找到),
2024-08-22 11:21:44
1132
原创 fiftyone启动数据
文件权限问题: FiftyOne 可能无法在指定的路径下创建或写入日志文件或数据库文件。数据库文件损坏: MongoDB 数据库文件可能已损坏,导致无法启动。端口冲突: MongoDB 可能尝试使用的端口已被其他进程占用。
2024-08-09 10:38:05
484
原创 得到xml所有label 名字和数量 get_xml_lab.py,get_json_lab.py
【代码】得到xml所有label 名字和数量 get_xml_lab.py。
2024-07-30 15:48:23
206
原创 xml的检测框剪裁后分割,还原到原图的分割坐标保存json
import osimport jsonimport xml.etree.ElementTree as ETimport cv2import numpy as np# 假设你的分割模型和配置from paddleseg import PaddleSeg# 分割模型初始化model = PaddleSeg(config='path_to_config', model_path='path_to_model')def seg_img(img): # 运行分割模型 pred
2024-07-26 16:07:05
215
原创 docker默认存储地址 var/lib/docker 满了,换个存储地址操作流程
当涉及到大文件或需要节省带宽时,考虑使用rsync。在进行敏感数据传输时,选择rsync并配置加密选项。如果只需在本地进行简单的文件复制,可以使用cp。
2024-07-18 14:07:19
820
原创 docker build 建立镜像,多出很多 none 的中间层镜像
实际上,这些镜像也没必要删除,在docker中,相同的层只会存一遍,而这些镜像是别的镜像的依赖,因此并不会因为它们被列出来而多存了一份,无论如何你也会需要它们。只要删除那些依赖它们的镜像后,这些依赖的中间层镜像也会被连带删除。当新版本发布后重新pull,旧的镜像名会被新镜像所占用,旧镜像的名字会变成。仓库名、标签均为的镜像被称为虚悬镜像,一般来说,虚悬镜像已经失去了存在的价值,是可以随意删除的。这些事 docker build 构建时候的中间层镜像不用删除,删除镜像会自动删除。
2024-07-15 14:35:42
824
原创 加载多个trt 文件,路径,环境没变,报错recommend and is likely to arrect performance or even caus
【代码】加载多个trt 文件,路径,环境没变,报错recommend and is likely to arrect performance or even caus。
2024-07-12 11:37:24
437
原创 docker import ,load 区别试用场景
③docker export 导出的镜像是不带历史记录的,如果原本的镜像有3层,export 之后只会有1层,这一层为从镜像运行到export之间对文件系统的修改。docker commit保存镜像文件系统的历史层,docker export保存从镜像运行到export之间对文件系统的修改的最新一层。生产环境没有外网,在本机将镜像打包成tar。比 docker save的包要小,原因是save的是一个分层的文件系统,export导出的只是一层文件系统。主要作用是将配置好的一些容器复用,再生成新的镜像。
2024-07-10 15:37:20
597
原创 查找文件夹是否存在,查找文件夹下的某个前缀的图片名字是否存在python
【代码】查找文件夹是否存在,查找文件夹下的某个前缀的图片名字是否存在python。
2024-06-28 13:50:59
171
原创 Ai新功能使用,
LangChain 提供了对向量数据库的支持,能够把超长的 txt、pdf 等通过大模型转换为 embedding 的形式,存到向量数据库中,然后利用数据库进行检索。这样就可以支持更多长度的输入,解放了 LLM 的优势。
2024-06-25 10:51:30
162
原创 vncsever ,window 远程ubuntu远程界面安装方式,VNC Viewer安装教程+ linux配置server 操作
gdm3 和 lightdm 是两种不同的显示管理器 (DisplayManager),它们用于管理用户登录和会话启动。你可以根据以下描述选择适合你的显示管理器:默认的显示管理器用于 GNOME 桌面环境。提供更现代和全面的功能。具有较高的资源消耗(相对于 lightdm)。如果你喜欢GNOME 桌面环境并且不介意较高的资源使用,可以选择 GDM3。LightDM:轻量级显示管理器,适用于资源受限的系统。默认用于 Xfce、LXDE 和其他轻量级桌面环境。提供较快的启动时间和较低的资源消耗。
2024-06-25 10:38:08
679
原创 dvc 更新加载模型版本控制
dvc即data version control, 是一种针对人工智能项目(机器学习或者深度学习)的数据版本管理工具。DVC的操作和GIT类似,可以认为为GIT的二次开发封装。结合GIT,DVC可以有效的管理人工智能项目的整个流程,包括代码,数据,训练配置,模型。dvc:负责数据和模型等大文件的存储、下载等管理,同时生成元数据(.dvc文件)描述这些数据和模型, 并且串联整个人工智能项目工作流。git:负责代码和dvc生成的元数据文件的版本管理。
2024-06-13 16:35:03
516
原创 conda虚拟环境,安装pytorch cuda cudnn版本一致,最简单方式
1、pytorch版本安装(卸载也会有问题)(1)版本如何选择参考和卸载(2)对应版本如何安装命令。
2024-06-12 10:43:01
836
原创 medsam ,书入xml +img, 根据检测框,生成可训练的伪颜色图片和原图,加入15%框的扩增,加上点的减少处理
import numpy as npimport matplotlib.pyplot as pltimport osjoin = os.path.joinimport torchfrom segment_anything import sam_model_registryfrom skimage import io, transformimport torch.nn.functional as Fimport argparsefrom PIL import Image@torch.
2024-05-29 17:26:45
379
原创 medsam ,数入xml +img, 根据检测框,原图显示分割效果,加上点的减少处理
【代码】medsam ,数入xml +img, 根据检测框,原图显示分割效果,加上点的减少处理。
2024-05-29 17:24:18
585
原创 多标签分割
https://github.com/PaddlePaddle/PaddleSeg/blob/release/2.9/configs/multilabelseg/README_cn.md
2024-05-10 17:45:01
368
原创 transformer 最简单学习3, 训练文本数据输入的形式
文本数据,是每个单词对应的索引,需要对数据进行切分成整块的batch, (n行,batch列), 变成竖着的,横着看,每一位 AGMS 对应 BHNT, AB, GH, MN, ST, 是相邻的两个字。然后,横着一个一个 切分成一个个batch数据,下移一个索引获取目标数据,1、输入数据中,源数据和目标数据的定义。(batch行,n列)
2024-04-25 14:14:00
578
原创 yolov5 的几个问题,讲的比较清楚
(3)Diou 也是 -1,1 之间,多了2个线段的比值,(两个框中线点的线段)^2 / (S3的对角线)^2,当没有交集的框很远的时候,这个比值接近1,完全重叠时为0, ,目前已经很好了,考虑了重叠面积,考虑了中心点的距离,但是还少了一个宽高比的相似度, 为了进一步提升训练的稳定性和收敛速度,在DIOU的基础上CIOU又被提了出来,它将重叠面积、中心点距离、宽高比同时加入了计算。每个框的 标签label 是0-1, 利用BCE 损失,预测一个0-1 的值, 得到了置信度。
2024-04-20 17:26:05
1130
原创 多个分割对象,读取jsons 文件夹,然后先分割大目标再分割小目标分割,一张图多个分割目标mask
【代码】多个分割对象,读取jsons 文件夹,然后先分割大目标再分割小目标分割,一张图多个分割目标mask。
2024-04-12 16:23:28
417
原创 pytorch2 onnx 2tensorrt,代码参考
Pytorch导出onnx模型,C++转化为TensorRT并实现推理过程tensorRT部署之 代码实现 onnx转engine/trt模型ONNX模型转TRT部署推理c++
2024-03-26 11:25:22
163
原创 大模型的学习 LLaMa和ChatGLM,minichatgpt4
prompt-tune, 包括p-tuning、lora、prompt-tuning、adaLoRA等delta tuning方法,部分模型参数参与微调,训练快,显存占用少,效果可能跟FT(fine-tune)比会稍有效果损失,但一般效果能打平。ChatGLM-6B, LLaMA-7B模型分别是60亿参数量和70亿参数量的大模型,基本可以处理所有NLP任务,效果好,但大模型部署成本高,需要大显存的GPU,并且预测速度慢,V100都需要1秒一条。LLaMa和ChatGLM,minichatgpt4。
2024-03-26 09:42:19
1030
Ubuntu16.04+显卡GTX1060+cudn8.0+opencv3.1+caffe,
2018-07-09
FDDB,测试自己训练的模型,如何生成FDDB 文件,详细细节
2018-09-18
opencv3.1,cmake,ippicv包下载
2018-07-09
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人