贝猫说python
码龄5年
  • 861,481
    被访问
  • 193
    原创
  • 36,444
    排名
  • 252
    粉丝
关注
提问 私信

个人简介:主要从事计算机视觉相关工作,分享python知识以及有趣应用

  • 加入CSDN时间: 2016-12-28
博客简介:

m0_37192554的博客

查看详细资料
  • 5
    领奖
    总分 1,420 当月 31
个人成就
  • 博客专家认证
  • 获得444次点赞
  • 内容获得191次评论
  • 获得1,884次收藏
创作历程
  • 28篇
    2021年
  • 124篇
    2020年
  • 198篇
    2019年
  • 213篇
    2018年
成就勋章
TA的专栏
  • reid
    6篇
  • c++
    2篇
  • 模型压缩
    1篇
  • 工具使用
    18篇
  • Python使用
    11篇
  • caffe
    53篇
  • K-Means
    2篇
  • boxes
    4篇
  • FDDB
    1篇
  • 人脸检测
    18篇
  • 数据集
    2篇
  • 神经网络
    1篇
  • AlexNet
    2篇
  • prototxt
    4篇
  • 深度学习网络结构
    1篇
  • softmax
    1篇
  • tensorflow
    1篇
  • mtcnn
    3篇
  • fasterrcnn
    1篇
  • 人脸识别
    16篇
  • 机器视觉
    1篇
  • 机器学习
    4篇
  • 姿态估计
    1篇
  • pytorch
    9篇
  • 优化
    8篇
  • 博客主
  • kaggle
  • 英语
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

GAT1400全四个文档.rar

发布资源 2021.12.01 ·
rar

2021 Principled Synthetic-to-Real Dehazing Guided by Physical Priors oral解读

2021 Principled Synthetic-to-Real Dehazing Guided by PhysicalPriors, CVPR2021https://github.com/zychen-ustc/PSD-Principled-Synthetic-to-Real-Dehazing-Guided-by-Physical-Priors2、训练细节1、论文训练数据,RESIDE数据中的户外合成数据,OTS_ALPHA,数据有313590个图片+ RESIDE数据的无标注真实图片,Un
原创
发布博客 2021.11.30 ·
2024 阅读 ·
1 点赞 ·
3 评论

onnxruntime统计onnx模型gpu运行时间

import torchimport numpy as npimport onnximport onnxruntimefrom onnxruntime.datasets import get_exampleimport osimport cv2import timeos.environ["CUDA_VISIBLE_DEVICES"] = "0"def onnx_out(onnx_path,img): sess = onnxruntime.InferenceSession(onn
原创
发布博客 2021.11.09 ·
1351 阅读 ·
0 点赞 ·
3 评论

去雨去雾的研究和可用方法

一、基本概念目前已知的方案有两种。第一种是基于图像增强的方法,这类方法是对被降质的图像进行增强,改善图像的质量。但是,这种方法可能会造成图像部分信息的损失,使图像失真。第二类是基于物理模型的方法,这种方法通过研究大气悬浮颗粒对光的散射作用,建立大气散射模型,了解图像退化的物理机理,并反演复原出未降质前的图像。这是一类专门针对雾天图像的图像复原的方法,复原出来的图像效果真实,贴近降质前景物原景,对复杂场景的图像处理效果较好,图像信息得到较完整的保存。1、神经网络的方法,和数据关系最大,学习的规则(模
原创
发布博客 2021.11.08 ·
2364 阅读 ·
2 点赞 ·
1 评论

输入关键点得到对齐人脸opencv align face

import cv2import numpy as npfrom skimage import transform as trans# 1、输入 关键点人脸+原图 # 2、输出 对齐后的人脸### input img is resize square or 112 96,输入只需要关键点坐标就可以了def process(img,landmark, align_img_size=(112,112)): M = None image_size = [] src =
原创
发布博客 2021.11.04 ·
99 阅读 ·
1 点赞 ·
0 评论

python 解析网页html,提取需要的页面信息

爬虫网络请求方式:urllib、 requests, scrapy(框架)、 pyspider(框架)爬虫数据提取方式:正则表达式, bs4, lxml, xpath, cssPython网络爬虫四大选择器(正则表达式、BS4、Xpath、CSS)总结如果你的爬虫瓶颈是下载网页,而不是抽取数据的话,那么使用较慢的方法(如BeautifulSoup) 也不成问题。如果只需抓取少量数据,并且想要避免额外依赖的话,那么正则表达式可能更加适合。通常情况下,lxml(该模块可以实现xpath和css)是抓取数
原创
发布博客 2021.10.18 ·
74 阅读 ·
0 点赞 ·
0 评论

pytorch模型最后添加新层add_module

model.fc.add_module('5', nn.Sigmoid()) #add sigmoid在 fc 后面添加新的层 (5): Sigmoid() out add sigmoid layer (fc): Sequential( (0): Linear(in_features=2048, out_features=1024, bias=True) (1): ReLU() (2): BatchNorm1d(1024, eps=1e-05, momentum=0
原创
发布博客 2021.09.06 ·
850 阅读 ·
0 点赞 ·
0 评论

pycahrm编辑代码不能全选,不能backespace删除,进入到插入状态解决办法

转载
发布博客 2021.08.31 ·
30 阅读 ·
0 点赞 ·
0 评论

onnx测试简化

if img_path is None: img = np.random.randint(0, 255, size=(112, 112, 3), dtype=np.uint8) else: img = cv2.imread(img_path) #img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = cv2.resize(img,(112,112)) ...
原创
发布博客 2021.08.30 ·
105 阅读 ·
0 点赞 ·
0 评论

惠普打印机公司网络连接过程,安装驱动

不会下载/安装打印机驱动!我教你
转载
发布博客 2021.08.23 ·
66 阅读 ·
0 点赞 ·
0 评论

Gitlab&Pycharm交互(拉取Get&更新Commit)

Gitlab&Pycharm交互(拉取Get&更新Commit) LittleWhite123 2020-08-21 22:15:06 ...
转载
发布博客 2021.08.10 ·
76 阅读 ·
0 点赞 ·
0 评论

人脸前后帧匹配问题,去重

①视频帧图片 retinaface人脸检测对齐:得到多个对齐的人脸,得到每个人脸质量分数,同时记录人脸信息d②进行特征提取,下一帧的时候重复1的过程,得到第二批特征人脸③两帧图片得到 mn矩阵相似度,排序找到最相似的人,比较质量分数进行更新,没有id,作为新的id添加,④对两张人脸图像的特征向量进行对比,计算相似度。...
原创
发布博客 2021.08.10 ·
49 阅读 ·
1 点赞 ·
0 评论

onnx tensorRT insightface 实践

一、环境问题1、查看自己的电脑版本cuda 版本cat /usr/local/cuda/version.txtcudnn 版本cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2不显示 运行如下命令cat /usr/local/cuda/include/cudnn_version.h | grep CUDNN_MAJOR -A 2CUDA Version 11.0.207#define CUDNN_MAJOR 8#def
原创
发布博客 2021.06.18 ·
369 阅读 ·
0 点赞 ·
0 评论

(转)深度学习PyTorch,TensorFlow中GPU利用率较低,CPU利用率很低,且模型训练速度很慢的问题总结与分析

深度学习PyTorch,TensorFlow中GPU利用率较低,CPU利用率很低,且模型训练速度很慢的问题总结与分析 置顶 是否龙磊磊真的一无所有 ...
转载
发布博客 2021.06.16 ·
1148 阅读 ·
3 点赞 ·
0 评论

查看ubuntu cpu 核数 和线程数

查看线程数grep ‘processor’ /proc/cpuinfo | sort -u | wc -l查看每个物理CPU中core的个数(即核数)cat /proc/cpuinfo| grep “cpu cores”| uniq查看逻辑CPU的个数cat /proc/cpuinfo| grep “processor”| wc -l
转载
发布博客 2021.06.16 ·
986 阅读 ·
0 点赞 ·
0 评论

人脸质量评估SER-FIQ (Quality estimation,CVPR 2020)代码解读

SER-FIQ (Quality estimation,CVPR 2020)https://zhuanlan.zhihu.com/p/348813783github地址def get_embedding_quality(img_input, insightface_model : InsightFace, ser_fiq : SERFIQ, T:int
原创
发布博客 2021.06.08 ·
399 阅读 ·
2 点赞 ·
3 评论

np.triu_indices 返回右上三角函数

>>> a = np.arange(16).reshape(4, 4)>>> aarray([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15]])>>> iu1 = np.triu_indices(4)>>> iu1(array([0, 0, 0, 0, 1, 1, 1, 2, 2, 3]).
原创
发布博客 2021.06.08 ·
82 阅读 ·
0 点赞 ·
0 评论

xshell 密钥key登陆,和密码登陆

基于Xshell使用密钥方式连接远程主机,具体内容如下连接远程主机,就验证身份而言,一般有两种方式,一种是通过用户密码;另一种通过公钥的方式(Public Key)。图1、xshell支持验证登录用户的方式下面就使用Public Key的方式来实现连接,通过工具ssh-kengen生成密钥对。注意:操作之前需要ping通本机和目的主机(如果ping不通,可能的原因是防火墙、SELinux没关闭,或者网关设置有问题等)使用XShell,这里使用的是XShell manager 5,目的主机为Ce.
转载
发布博客 2021.05.31 ·
786 阅读 ·
0 点赞 ·
0 评论

faiss安装pip 修改

1、官方推荐conda 安装,按照官方安装 https://github.com/facebookresearch/faiss/blob/master/INSTALL.md2、我用pip安装,报错修改faiss 包需要pip3 install faiss-gpu -i https://pypi.tuna.tsinghua.edu.cn/simple/不加gpu 安装的是cpu的版本 会报错'faiss' has no attribute 'StandardGpuResources'sudo apt
原创
发布博客 2021.05.12 ·
379 阅读 ·
1 点赞 ·
0 评论

pytorch训练 pil数据处理 替换的 opencv 库,cv2训练替换opencv_transforms

jbohnslav /opencv_transforms
原创
发布博客 2021.05.08 ·
95 阅读 ·
0 点赞 ·
0 评论
加载更多