Python 齿轮振动信号模型构建

本文详细探讨齿轮振动信号的数学模型,通过仿真代码演示如何生成不同工况下的振动特征,包括健康状态和故障情况,为齿轮状态监测提供实用工具。涉及的关键概念包括齿轮啮合频率、调幅、调频及其实现方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言


前面的文章已从齿轮动力学机理上揭示了齿轮振动特性,为更直观的表述齿轮振动信号特征,现从齿轮振动信号模型角度来进一步分析其振动特征,以便为后续齿轮的状态监测提供参考。

一、齿轮振动信号模型

由前面动力学分析可知,齿轮的振动信号可以表示成齿轮啮合频率及其倍频的正弦信号叠加而成,故障等其他激励可以看做是对载波信号的调频、调幅,由此可得齿轮振动信号数学形式:
在这里插入图片描述
式中,K为阶次、a为调幅分量、fm为啮合频率、b为调频分量、theta为相位。当只考虑一阶分量时,齿轮振动信号数学模型为:
在这里插入图片描述
根据上述数学模型,我们便可以仿真出齿轮在各类工况下的振动特性。

二、仿真代码

1.Demo

代码如下(示例):

import numpy as np
import matplotlib.pyplot as plt
import FFT

w = 5
z = 30
fs = 1024
fsw = 5
time = 1
f = w * z
t = np.linspace(0, time - 1 / fs, int(time * fs))
x = (1 + 1 * np.sin(2 * np.pi * 20 * t)) * np.sin(2 * np.pi * f * t)
amp, fre = FFT(x, 1024, fs)

plt.subplot(2, 1, 1)
plt.plot(t, x)
plt.ylabel('Amplitude')
plt.xlabel('time')
plt.subplot(2, 1, 2)
plt.plot(fre, amp)
plt.ylabel('Amplitude')
plt.xlabel('Frequency')
plt.show()

2.模型输出

在这里插入图片描述
上图为齿轮健康状态下的振动信号时域和频域变化特征,在健康状态下,时域信号为平稳变化的正弦信号,频域特征为齿轮的啮合频率。
在这里插入图片描述
上图为齿轮某个故障下的振动信号时域和频域变化特征,在该故障下,时域信号存在调幅情况,频域中的特征频率除了啮合频率,还在啮合频率两侧出现了边带。


总结

上述只是对齿轮部件振动特点做了一个简单分析,实际中的情况远比模型复杂,分析过程也更加严谨,下图是比较常见的齿轮频谱示例图(来源网络侵删),后续将逐步拆解分析齿轮各故障特点。
在这里插入图片描述
PS:欢迎各位交流,后续有啥想实现的信号处理功能,请在下方评论区留言,或者关注公众号:不说话上代码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不说话上代码

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值