经历一周忙碌的工作后,蒜头君想趁着周末好好游玩一番。蒜头君想去好多好多地方,他想去南锣鼓巷吃各种好吃的,想去颐和园滑冰,还想去怀柔滑雪场滑雪……可是时间有限,蒜头君并不能玩遍所有的地方,最后他决定去几个离他较近的。
我们知道蒜头君一共想去 N 个地方玩耍,编号从 1 到 N,并且知道了蒜头君所在地方的编号 C,以及 M 条路径。现在蒜头君想让你帮他算一算,他到每个地方分别需要经过多少个地方?
输入格式
第一行输入三个正整数 N,M,C。代表蒜头君想去 N 个地方,有 M 条路径,蒜头君在编号为 C 的地方。1≤N,C≤1000, 1≤C≤N, 1≤M≤10000。
保证没有重复边,且图中所有点互相连通。
输出格式
输出 N 行,按编号从小到大,输出结果。第 i行表示蒜头君到编号为 i 的地方,需要经过多少个地方。
样例输入
5 5 2 1 2 2 3 2 4 3 4 3 5
样例输出
1 0 1 12
开始邻接矩阵做,超时一组,看着觉得只超了一点,实际上只是超时了程序就停止了。然后改用邻接表,其实在这题上邻接表优势特别明显。题目思路很简单,直接bfs加一个计数数组。
邻接矩阵(有一组未过)
邻接表(AC)#include<iostream> #include<cstdio> #include<queue> using namespace std; int G[1005][1005],ans[1005]; int n,m,c; void fun() { int flag[1005]={0}; int last=c; int cnt=0; int foll; queue<int>q; flag[c]=1; q.push(c); while(!q.empty()) { int temp=q.front(); q.pop(); // if(temp==x) // break; ans[temp]=cnt; for(int i=1;i<=1000;i++) { if(G[temp][i]==1&&!flag[i]) { flag[i]=1; q.push(i); foll=i; } } if(temp==last) { cnt++; last=foll; } } // return cnt; } int main() { cin>>n>>m>>c; while(m--) { int a,b; cin>>a>>b; G[a][b]=1; G[b][a]=1; } for(int i=1;i<=n;i++) { // int ans=fun(i); fun(); cout<<ans[i]<<endl; } return 0; }
#include<iostream> #include<cstdio> #include<queue> #include<vector> using namespace std; int G[1005][1005],ans[1005]; vector<vector<int> >arr(1005); int n,m,c; void fun() { int flag[1005]={0}; int last=c; int cnt=0; int foll; queue<int>q; flag[c]=1; q.push(c); while(!q.empty()) { int temp=q.front(); q.pop(); // if(temp==x) // break; ans[temp]=cnt; for(int i=0;i<arr[temp].size();i++) { if(!flag[arr[temp][i]]) { flag[arr[temp][i]]=1; q.push(arr[temp][i]); foll=arr[temp][i]; } } if(temp==last) { cnt++; last=foll; } } // return cnt; } int main() { cin>>n>>m>>c; while(m--) { int a,b; cin>>a>>b; arr[a].push_back(b); arr[b].push_back(a); } for(int i=1;i<=n;i++) { // int ans=fun(i); fun(); cout<<ans[i]<<endl; } return 0; }