Description
给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。
计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1 。
你可以认为每种硬币的数量是无限的。
Intro
Ref Link:https://leetcode.cn/problems/coin-change/
Difficulty:Medium
Tag:Dynamic Programming、完全背包问题
Updated Date:2023-06-27
Test Cases
示例1:
输入:coins = [1, 2, 5], amount = 11
输出:3
解释:11 = 5 + 5 + 1
示例 2:
输入:coins = [2], amount = 3
输出:-1
示例 3:
输入:coins = [1], amount = 0
输出:0
提示:
1 <= coins.length <= 12
1 <= coins[i] <= 231 - 1
0 <= amount <= 104
思路: 动态规划
- 确定dp数组(dp table)以及下标的含义
- dp[i]: 凑足总额为 i 所需钱币的最少个数为 dp[i]
- 确定递推公式
- 凑足总额为j - coins[i]的最少个数为dp[j - coins[i]],那么只需要加上一个钱币coins[i]即dp[j - coins[i]] + 1就是dp[j]
- 所以dp[j] 要取所有 dp[j - coins[i]] + 1 中最小的。 递推公式:dp[j] = min(dp[j - coins[i]] + 1, dp[j]);
- dp数组如何初始化:
- 首先凑足总金额为0所需钱币的个数一定是0,那么dp[0] = 0;
- 考虑到递推公式的特性,dp[j]必须初始化为一个最大的数,否则就会在min(dp[j - coins[i]] + 1, dp[j])比较的过程中被初始值覆盖。所以下标非0的元素都是应该是最大值。
- 注意点:
- 背包问题:先遍历背包,再遍历物品
- 求解最少硬币数,则目标dp数组初始化时,值应该取最大值
- 从前往后遍历,刷新dp数组
Code AC
class Solution {
public int coinChange(int[] coins, int sum) {
int[] dp = new int[sum + 1];
dp[0] = 0;
for (int i = 1; i <= sum; i++) {
dp[i] = Integer.MAX_VALUE;
for (int j = 0; j < coins.length; j++) {
if (i - coins[j] >= 0 && dp[i - coins[j]] != Integer.MAX_VALUE) {
dp[i] = Math.min(dp[i], dp[i - coins[j]] + 1);
}
}
}
return dp[sum] == Integer.MAX_VALUE ? -1 : dp[sum];
}
Accepted
189/189 cases passed (15 ms)
Your runtime beats 37.31 % of java submissions
Your memory usage beats 46.8 % of java submissions (41.8 MB)
复杂度分析
- 时间复杂度:O(mn),m是硬币种类数,n是dp数组长度,即金额大小。
- 空间复杂度:O(n)