Killing LeetCode [322] 零钱兑换

Description

给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。

计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1 。

你可以认为每种硬币的数量是无限的。

Intro

Ref Link:https://leetcode.cn/problems/coin-change/
Difficulty:Medium
Tag:Dynamic Programming、完全背包问题
Updated Date:2023-06-27

Test Cases

示例1:

输入:coins = [1, 2, 5], amount = 11
输出:3 
解释:11 = 5 + 5 + 1

示例 2:

输入:coins = [2], amount = 3
输出:-1

示例 3:

输入:coins = [1], amount = 0
输出:0

提示:

1 <= coins.length <= 12
1 <= coins[i] <= 231 - 1
0 <= amount <= 104

思路: 动态规划

  • 确定dp数组(dp table)以及下标的含义
    • dp[i]: 凑足总额为 i 所需钱币的最少个数为 dp[i]
  • 确定递推公式
    • 凑足总额为j - coins[i]的最少个数为dp[j - coins[i]],那么只需要加上一个钱币coins[i]即dp[j - coins[i]] + 1就是dp[j]
    • 所以dp[j] 要取所有 dp[j - coins[i]] + 1 中最小的。 递推公式:dp[j] = min(dp[j - coins[i]] + 1, dp[j]);
  • dp数组如何初始化:
    • 首先凑足总金额为0所需钱币的个数一定是0,那么dp[0] = 0;
    • 考虑到递推公式的特性,dp[j]必须初始化为一个最大的数,否则就会在min(dp[j - coins[i]] + 1, dp[j])比较的过程中被初始值覆盖。所以下标非0的元素都是应该是最大值。
  • 注意点:
    • 背包问题:先遍历背包,再遍历物品
    • 求解最少硬币数,则目标dp数组初始化时,值应该取最大值
    • 从前往后遍历,刷新dp数组

Code AC

class Solution {
    public int coinChange(int[] coins, int sum) {
        int[] dp = new int[sum + 1];
        dp[0] = 0;
        for (int i = 1; i <= sum; i++) {
            dp[i] = Integer.MAX_VALUE;
            for (int j = 0; j < coins.length; j++) {
                if (i - coins[j] >= 0 && dp[i - coins[j]] != Integer.MAX_VALUE) {
                    dp[i] = Math.min(dp[i], dp[i - coins[j]] + 1);
                }
            }
        }
        return dp[sum] == Integer.MAX_VALUE ? -1 : dp[sum];
    }

Accepted

189/189 cases passed (15 ms)
Your runtime beats 37.31 % of java submissions
Your memory usage beats 46.8 % of java submissions (41.8 MB)

复杂度分析

  • 时间复杂度:O(mn),m是硬币种类数,n是dp数组长度,即金额大小。
  • 空间复杂度:O(n)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值