【Pytorch深度学习实战】(4)前馈神经网络(FNN)

🔎大家好,我是Sonhhxg_柒,希望你看完之后,能对你有所帮助,不足请指正!共同学习交流🔎

📝个人主页-Sonhhxg_柒的博客_CSDN博客 📃

🎁欢迎各位→点赞👍 + 收藏⭐️ + 留言📝​

📣系列专栏 - 机器学习【ML】 自然语言处理【NLP】  深度学习【DL】

 🖍foreword

✔说明⇢本人讲解主要包括Python、机器学习(ML)、深度学习(DL)、自然语言处理(NLP)等内容。

如果你对这个系列感兴趣的话,可以关注订阅哟👋

FNN模型是2016提出来的,当时各大公司都还在探索如何将深度学习技术应用于推荐系统,一些头部公司开始了初步的尝试,比如Google应用并发表了Wide&Deep模型,微软在Bing的搜索广告场景尝试了Deep Crossing模型,都是那个时代的代表模型,对业界发展起到了重要作用。不过即使是号称完全自动化特征工程的Deep Crossing模型,也没有做显式特征交叉。那深度学习时代,能否让模型既有像FM那样做显式特征交叉,又具备DNN的隐式高阶交叉和泛化能力呢?FNN就是这样的尝试,试图将FM和DNN结合起来,模型结构如图所示。

模型的核心思想是采用FM训练得到的隐向量作为神经网络第一层权重的初始值,之后是隐藏层,最后是点击率预估的输出。其实是一个Embedding + MLP结构,特殊的是Embedding的初始值是FM模型已经预训练好的结果。FM与Embedding的初始化对应关系如图所示。

由于Embedding的初始值得到了FM的预训练,因此在训练DNN的时候,模型收敛速度更快;并且Embedding包含了组合特征的信息,可以不用做额外的特征工程;DNN在FM的基础上对特征组合做了进一步的高阶特征组合,模型能得到更好的效果。不过由于整个训练过程分成了两阶段,其实不是一个端到端的训练过程,而是一种基于参数的迁移学习。

FNN存在的问题有:

1. Embedding参数受FM的影响,模型能力受限于FM表征能力的上限;

2. 训练过程分两阶段进行,过程较复杂,效率不高;

3. FNN只能学习高阶特征组合,没有对低阶特征建模,但很多特征的高阶交叉是无意义的。

前馈神经网络Pytorch的实现 


 
 
  1. import torch
  2. import torch.nn as nn
  3. import torchvision
  4. import torchvision.transforms as transforms
  5. # 设备配置
  6. device = torch.device( 'cuda' if torch.cuda. is_available() else 'cpu')
  7. # 超参数
  8. input_ size = 784
  9. hidden_ size = 500
  10. num_classes = 10
  11. num_epochs = 5
  12. batch_ size = 100
  13. learning_rate = 0.001
  14. # MNIST 数据集
  15. train_dataset = torchvision.datasets.MNIST(root = '../../data',
  16. train = True,
  17. transform =transforms.ToTensor(),
  18. download = True)
  19. test_dataset = torchvision.datasets.MNIST(root = '../../data',
  20. train = False,
  21. transform =transforms.ToTensor())
  22. # 数据加载器
  23. train_loader = torch.utils. data.DataLoader(dataset =train_dataset,
  24. batch_ size =batch_ size,
  25. shuffle = True)
  26. test_loader = torch.utils. data.DataLoader(dataset = test_dataset,
  27. batch_ size =batch_ size,
  28. shuffle = False)
  29. # 具有一个隐藏层的全连接神经网络
  30. class NeuralNet(nn.Module):
  31. def __init__( self, input_ size, hidden_ size, num_classes):
  32. super(NeuralNet, self).__init__()
  33. self.fc 1 = nn.Linear( input_ size, hidden_ size)
  34. self.relu = nn.ReLU()
  35. self.fc 2 = nn.Linear(hidden_ size, num_classes)
  36. def forward( self, x):
  37. out = self.fc 1(x)
  38. out = self.relu(out)
  39. out = self.fc 2(out)
  40. return out
  41. model = NeuralNet( input_ size, hidden_ size, num_classes). to(device)
  42. # 损失和优化器
  43. criterion = nn.CrossEntropyLoss()
  44. optimizer = torch.optim.Adam(model.parameters(), lr =learning_rate)
  45. # 训练模型
  46. total_step = len(train_loader)
  47. for epoch in range(num_epochs):
  48. for i, (images, labels) in enumerate(train_loader):
  49. # Move tensors to the configured device
  50. images = images.reshape(- 1, 28 * 28). to(device)
  51. labels = labels. to(device)
  52. # 前向传播
  53. outputs = model(images)
  54. loss = criterion(outputs, labels)
  55. # 向后优化
  56. optimizer. zero_grad()
  57. loss.backward()
  58. optimizer.step()
  59. if (i + 1) % 100 = = 0:
  60. print ( 'Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
  61. . format(epoch + 1, num_epochs, i + 1, total_step, loss.item()))
  62. # 测试模型
  63. # In test phase, we don 't need to compute gradients (for memory efficiency)
  64. with torch.no_grad():
  65. correct = 0
  66. total = 0
  67. for images, labels in test_loader:
  68. images = images.reshape(-1, 28*28).to(device)
  69. labels = labels.to(device)
  70. outputs = model(images)
  71. _, predicted = torch.max(outputs.data, 1)
  72. total += labels.size(0)
  73. correct += (predicted == labels).sum().item()
  74. print('Accuracy of the network on the 10000 test images: {} % '.format(100 * correct / total))
  75. # 保存模型
  76. torch.save(model.state_dict(), 'model.ckpt ')

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值