网络中节点特征的获取方法

DeepWalk

(借鉴自NLP中的word2vec,使用了随机游走的方法)

出自《DeepWalk: Online Learning of Social Representations》该论文,本文提出了一种网络嵌入的方法叫DeepWalk,它的输入是一张图或者网络,输出为网络中顶点的向量表示。DeepWalk通过截断随机游走(truncated random walk)学习出一个网络的社会表示(social representation),在网络标注顶点很少的情况也能得到比较好的效果。并且该方法还具有可扩展的优点,能够适应网络的变化。

算法描述:对图G,随机采样1个节点v,然后以此为起点连续采样,直到达到最大路径长度t,再通过Skip-gram来更新参数

 

DeepWalk2

(Node2Vector,在DeepWalk的基础上进行了改良)

出自论文node2vec: Scalable Feature Learning for Networks》,文中首先提出了网络节点间游走(采样)的两种方式:Breadth-first Sampling(BFS)和Depth-first Sampling(DFS),其实有点类似常说的广搜和深搜,不同于DeepWalk中的随机选择,文章结合了BFS和DFS计算当前节点到下一个应去节点的概率。也由于这种游走方式的复杂性,在网络节点的个数较少时,node2vec的效果整体上要优于deepwalk,但在节点多到可能影响空间限制时,deepwalk效果更优。

 

图特征构建节点特征

该方法出自《Mining protein networks for synthetic genetic interactions》该文章整合了节点在图上的图特征构建节点特征向量,图特征包括:Degree、Clustering coefficient、Closeness centrality、Normalized betweenness centrality等等。具体的图特征的计算方法可以查看论文。

 

SDNE

出自论文《Structural Deep Network Embedding》,在auto-encoder的基础上,使用二阶邻近关系被无监督学习用来捕获全局的网络结构,一阶邻近关系使用监督学习来保留网络的局部结构。利用多层非线性函数的组成将数据映射到高度非线性的潜在空间。

MASHUP

出自论文《Compact Integration of Multi-Network Topology for Functional Analysis of Genes》,该文章的创新点在于整合不同的异构网络,获得更精确的节点特征表达。首先,利用带重启的随机游走计算每个网络中每个节点的扩散表示,该扩散表示用于表示该节点与网络中各个其它节点的相关性。然后通过构造模型来近似这些扩散表示的分布,通过每个节点的低维特征向量进行参数化,同时最小化该模型的损失和扩散表示之间的差异来获得最终的特征向量。

Mashup最终得到的特征可以直接用于机器学习的分类任务。Mashup代码及已计算出的特征向量。方法图:

 

 

  • 1
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值