题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1978
How many ways
Problem Description
这是一个简单的生存游戏,你控制一个机器人从一个棋盘的起始点(1,1)走到棋盘的终点(n,m)。游戏的规则描述如下:
1.机器人一开始在棋盘的起始点并有起始点所标有的能量。
2.机器人只能向右或者向下走,并且每走一步消耗一单位能量。
3.机器人不能在原地停留。
4.当机器人选择了一条可行路径后,当他走到这条路径的终点时,他将只有终点所标记的能量。
如上图,机器人一开始在(1,1)点,并拥有4单位能量,蓝色方块表示他所能到达的点,如果他在这次路径选择中选择的终点是(2,4)
点,当他到达(2,4)点时将拥有1单位的能量,并开始下一次路径选择,直到到达(6,6)点。
我们的问题是机器人有多少种方式从起点走到终点。这可能是一个很大的数,输出的结果对10000取模。
1.机器人一开始在棋盘的起始点并有起始点所标有的能量。
2.机器人只能向右或者向下走,并且每走一步消耗一单位能量。
3.机器人不能在原地停留。
4.当机器人选择了一条可行路径后,当他走到这条路径的终点时,他将只有终点所标记的能量。
如上图,机器人一开始在(1,1)点,并拥有4单位能量,蓝色方块表示他所能到达的点,如果他在这次路径选择中选择的终点是(2,4)
点,当他到达(2,4)点时将拥有1单位的能量,并开始下一次路径选择,直到到达(6,6)点。
我们的问题是机器人有多少种方式从起点走到终点。这可能是一个很大的数,输出的结果对10000取模。
Input
第一行输入一个整数T,表示数据的组数。
对于每一组数据第一行输入两个整数n,m(1 <= n,m <= 100)。表示棋盘的大小。接下来输入n行,每行m个整数e(0 <= e < 20)。
对于每一组数据第一行输入两个整数n,m(1 <= n,m <= 100)。表示棋盘的大小。接下来输入n行,每行m个整数e(0 <= e < 20)。
Output
对于每一组数据输出方式总数对10000取模的结果.
Sample Input
1 6 6 4 5 6 6 4 3 2 2 3 1 7 2 1 1 4 6 2 7 5 8 4 3 9 5 7 6 6 2 1 5 3 1 1 3 7 2
Sample Output
3948
注意理解---走到这条路径的终点时,只有终点标记的能量。
#include<iostream>
#include<cstring>
using namespace std;
int main()
{
int T,i,j,n,m,x,y,di,dj;
int a[101][101],dp[101][101];
cin>>T;
while(T--)
{
scanf("%d%d",&n,&m);
for(i=1;i<=n;i++)
{
for(j=1;j<=m;j++)
{
scanf("%d",&a[i][j]);
}
}
memset(dp,0,sizeof(dp));
//初始化为1, dp[i][j]代表从起点到ij的方式个数
dp[1][1]=1;
for(i=1;i<=n;i++)
{
for(j=1;j<=m;j++)
{
if(dp[i][j])
{
int t=a[i][j];
//蓝色区域
for(x=0;x<=t;x++)
{
for(y=0;y<=t-x;y++)
{
//不能在原地不动
if(x==0&&y==0)
continue;
di=x+i;
dj=y+j;
if(di<=n&&dj<=m)
dp[di][dj]=(dp[i][j]+dp[di][dj])%10000;
}
}
}
}
}
cout<<dp[n][m]<<endl;
}
return 0;
}