背包(01背包、完全背包、多重背包)

N件物品,背包容量为V,第i件的费用为cost[i],价值是value[i],求将哪些物品装入背包可使费用总和不超过背包的容量且价值总和最大。

01背包 - 每种物品仅有一件,可以选择放或不放。

状态转移方程 dp[i][v]=max( dp[i-1][v] , dp[i-1][v-cost[i]]+value[i] )  dp[i][j]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。

用一维数组表示(逆序遍历)
for(i=1;i<=N;i++)
for(v=V;v>=0;v--)//直到再也放不进去为止。
dp[v]=max( dp[v] , dp[v-cost[i]]+value[i] )

----------------------------------------------关于逆序遍历------------------------------------------

为了保证每件物品只选一次

dp[i][v]只与dp[i-1][v]和dp[i-1][v-cost[i]]有关,即只和i-1时刻状态有关,所以我们只需要用一维数组dp[]来保存i-1时的状态dp[],遍历V时逆序遍历,这样才能保证求i时刻dp[v]时dp[v-cost[i]]是i-1时刻的值。如果正序遍历则当求f[v]时其前面的dp[0],dp[1],…,dp[v-1]都已经被更新改变过,里面存的都不是i-1时刻的值,肯定是错的。

-----------------------------------------------------------------------------------------------------

代码实现:

 

for(int i=1;i<=n;i++)
{
	for(int j=v;j>=cost[i];j--)
	{
		dp[j]=max(dp[j],dp[j-cost[i]]+value[i]]);
	}
}


N件物品,背包容量为V,每种物品有无限件,第i种的费用为cost[i],价值是value[i],求将哪些物品装入背包可使费用总和不超过背包的容量且价值总和最大。

 

完全背包--可以无限制的取某一件物品即每件物品可以多次使用。

状态转移方程dp[i][v]=max( dp[i-1][v-k*cost[i]]+k*value[i] ) (0<k*cost[i]<=v)
用一维数组表示(正序遍历)for(i=1;i<=N;i++)for(v=0;v<=V;v++)dp[v]=max( dp[v] , dp[v-cost[i]]+value[i] ) 

代码实现:

 

for(int i=1;i<=n;i++)
{
	for(int j=cost[i];j<=v;j++)
	{
		dp[j]=max(dp[j],dp[j-cost[i]]+value[i]]);
	}
}

 

 

 

初始化分为两种情况:

1.      如果背包要求正好装满则初始化dp[0]=0,其余为-inf(负无穷)。

2.      如果背包不要求正好装满则初始化dp均为0.

举例如下:V=10,N=3,cost[i]={3,4,5}, value[i]={4,5,6}

 

N种物品,背包容量为V,第i种物品最多有n[i]件可用,每件费用为cost[i],价值是value[i],求将哪些物品装入背包可使费用总和不超过背包容量,且价值总和最大。 

多重背包--第i种物品最多有n[i]件可用
状态转移方程:dp[i][v]=max(dp[i-][v-k*cost[i]]+k*value[i])  (0<=k<=n[i])

转化为01背包问题:
把第i种物品换成n[i]件01背包中的物品,即物品数为∑n[i]的01背包问题。复杂度仍然是O(V*∑n[i])。

仍然考虑二进制的思想,我们考虑把第i种物品换成若干件物品,使得原问题中第i种物品可取的每种策略——取0..n[i]件——均能等价于取若干件代换以后的物品,分成的这几件物品的系数和为n[i],表明不可能取多于n[i]件的第i种物品,这样就将第i种物品分成了O(log n[i])种物品,将原问题转化为了复杂度为O(V*∑log n[i])的01背包问题。 

方法:将第i种物品分成若干件物品,其中每件物品有一个系数,这件物品的费用和价值均是原来的费用和价值乘以这个系数。使这些系数分别为 1,2,4,...,2^(k-1),n[i]-2^k+1,且k是满足n[i]-2^k+1>0的最大整数。例如,如果n[i]为13,就将这种物品分成系数分别为1,2,4,6的四件物品,n[i]为10,则分为1,2,4,3。 

代码实现:

 

for(i=1;i<=kind;i++)//物品的种类
{
	for(j=1;j<=num[i];j*=2)//二进制优化
	{
		for(k=money;k>=j*cost[i];k--)
		{
			dp[k]=max(dp[k],dp[k-j*cost[i]]+j*value[i]);
		}
		num[i]-=j;//计算剩下的部分 
	 } 
	 if(num[i])
	 {
	 	for(k=money;k>=num[i]*cost[i];k--)
	 	{
	 		dp[k]=max(dp[k],dp[k-num[i]*cost[i]]+num[i]*value[i]);
		 }
	 }
 } 

 

 

 

 

 

混合三种背包问题,即有的物品只可以取一次(01背包),有的物品可以取无限次(完全背包),有的物品取的次数有一个上限(多重背包)。

#include<bits/stdc++.h>
using namespace std;
int cost[555],value[555],num[555];
int dp[6666];
int main(){
	int n,m;
	cin>>m>>n;
	for(int i=1;i<=n;i++){
		cin>>cost[i]>>value[i]>>num[i];
	}
	for(int i=1;i<=n;i++){
		if(num[i]==0){
			for(int j=cost[i];j<=m;j++){
				dp[j]=max(dp[j],dp[j-cost[i]]+value[i]);
			}
		}else{
			for(int j=1;j<=num[i];j++){
				for(int k=m;k>=cost[i];k--){
					dp[k]=max(dp[k],dp[k-cost[i]]+value[i]);
				}
			}
		}
	}
	cout<<dp[m]<<endl;
	return 0;
}

 

二维费用的背包问题

 

对于每件物品,具有两种不同的费用;选择这件物品必须同时付出这两种代价;对于每种代价都有一个可付出的最大值(背包容量)。问怎样选择物品可以得到最大的价值。设这两种代价分别为代价1和代价2,第i件物品所需的两种代价分别为a[i]b[i]。两种代价可付出的最大值(两种背包容量)分别为VU。物品的价值为w[i] 
算法 
费用加了一维,只需状态也加一维即可。设f[i][v][u]表示前i件物品付出两种代价分别为vu时可获得的最大价值。状态转移方程就是:f [i][v][u]=max{f[i-1][v][u],f[i-1][v-a[i]][u-b[i]]+w[i]}。如前述方法,可以只使用二维的数组:当每件物品只可以取一次时变量vu采用顺序的循环,当物品有如完全背包问题时采用逆序的循环。当物品有如多重背包问题时拆分物品。 
物品总个数的限制 
有时,二维费用的条件是以这样一种隐含的方式给出的:最多只能取M件物品。这事实上相当于每件物品多了一种件数的费用,每个物品的件数费用均为1,可以付出的最大件数费用为M。换句话说,设f[v][m]表示付出费用v、最多选m件时可得到的最大价值,则根据物品的类型(01、完全、多重)用不同的方法循环更新,最后在f[0..V][0..M]范围内寻找答案。 

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值