HDU-1874-畅通工程续

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1874

畅通工程续

Problem Description
某省自从实行了很多年的畅通工程计划后,终于修建了很多路。不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行走的距离要短很多。这让行人很困扰。

现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。
 
Input
本题目包含多组数据,请处理到文件结束。
每组数据第一行包含两个正整数N和M(0<N<200,0<M<1000),分别代表现有城镇的数目和已修建的道路的数目。城镇分别以0~N-1编号。
接下来是M行道路信息。每一行有三个整数A,B,X(0<=A,B<N,A!=B,0<X<10000),表示城镇A和城镇B之间有一条长度为X的双向道路。
再接下一行有两个整数S,T(0<=S,T<N),分别代表起点和终点。  

Output
对于每组数据,请在一行里输出最短需要行走的距离。如果不存在从S到T的路线,就输出-1.  

Sample Input
  
  
3 3 0 1 1 0 2 3 1 2 1 0 2 3 1 0 1 1 1 2  

Sample Output
  
  
2 -1
 

注意两个城镇间的道路可能有多条,选取最短的那条。

floyd 算法

#include<iostream>
#include<cstdio>
using namespace std;
const int inf=999999;
int n,m;
int e[1111][1111];
void init()
{
	int i,j;
	for(i=0;i<n;i++)
	{
		for(j=0;j<n;j++)
		{
			if(i==j)
			e[i][j]=0;
			else
			e[i][j]=inf;
		}
	}
}
void floyd()
{
	int i,j,k;
	for(k=0;k<n;k++)
	{
		for(i=0;i<n;i++)
		{
			if(e[i][k]!=inf)
			{
				for(j=0;j<n;j++)
				{
					if(e[i][j]>e[i][k]+e[k][j])
					e[i][j]=e[i][k]+e[k][j];
				}
			}
		}
	}
}
int main()
{
	int i,j,u,v,w,s,t;
	while(~scanf("%d%d",&n,&m))
	{
		init();
		for(i=0;i<m;i++)
		{
			cin>>u>>v>>w;
			e[u][v]=min(e[u][v],w);//注意!!!
			e[v][u]=e[u][v];
		}
		floyd();
		cin>>s>>t;
		if(e[s][t]!=inf)
		cout<<e[s][t]<<endl;
		else
		cout<<"-1"<<endl;
		
	}
	return 0;
}

dijkstra 代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int inf=999999;
int e[1111][1111],visit[1111],dis[1111];
int n,m;
void init()
{
	for(int i=0;i<n;i++)
	{
		for(int j=0;j<n;j++)
		{
			if(i==j)
			e[i][j]=0;
			else
			e[i][j]=inf;
		}
	}
}
void dijkstra(int s)
{
	int i,j,u,v;
	for(i=0;i<n;i++)
	{
		dis[i]=e[s][i];
	}
	//dis[s]=0;
	memset(visit,0,sizeof(visit));
	visit[s]=1;
	for(i=0;i<n-1;i++)
	{
		int minn=inf;
		for(j=0;j<n;j++)
		{
			if(!visit[j]&&dis[j]<minn)
			{
				minn=dis[j];
	            u=j;
			}
		}
		visit[u]=1;
		for(v=0;v<n;v++)
		{
			if(!visit[v]&&dis[v]>dis[u]+e[u][v])
			dis[v]=dis[u]+e[u][v];
		}
	}
}
int main()
{
	int u,v,w,i,s,t;
	while(~scanf("%d%d",&n,&m))
	{
		init();
		for(i=0;i<m;i++)
		{
			cin>>u>>v>>w;
			e[u][v]=min(e[u][v],w);
			e[v][u]=e[u][v];
		}
		cin>>s>>t;
		dijkstra(s);
		if(dis[t]!=inf)
		{
			cout<<dis[t]<<endl;
		}
		else
		cout<<"-1"<<endl;
	}
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值