题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1874
畅通工程续
Problem Description
某省自从实行了很多年的畅通工程计划后,终于修建了很多路。不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行走的距离要短很多。这让行人很困扰。
现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。
现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。
Input
本题目包含多组数据,请处理到文件结束。
每组数据第一行包含两个正整数N和M(0<N<200,0<M<1000),分别代表现有城镇的数目和已修建的道路的数目。城镇分别以0~N-1编号。
接下来是M行道路信息。每一行有三个整数A,B,X(0<=A,B<N,A!=B,0<X<10000),表示城镇A和城镇B之间有一条长度为X的双向道路。
再接下一行有两个整数S,T(0<=S,T<N),分别代表起点和终点。
每组数据第一行包含两个正整数N和M(0<N<200,0<M<1000),分别代表现有城镇的数目和已修建的道路的数目。城镇分别以0~N-1编号。
接下来是M行道路信息。每一行有三个整数A,B,X(0<=A,B<N,A!=B,0<X<10000),表示城镇A和城镇B之间有一条长度为X的双向道路。
再接下一行有两个整数S,T(0<=S,T<N),分别代表起点和终点。
Output
对于每组数据,请在一行里输出最短需要行走的距离。如果不存在从S到T的路线,就输出-1.
Sample Input
3 3 0 1 1 0 2 3 1 2 1 0 2 3 1 0 1 1 1 2
Sample Output
2 -1
注意两个城镇间的道路可能有多条,选取最短的那条。
floyd 算法
#include<iostream>
#include<cstdio>
using namespace std;
const int inf=999999;
int n,m;
int e[1111][1111];
void init()
{
int i,j;
for(i=0;i<n;i++)
{
for(j=0;j<n;j++)
{
if(i==j)
e[i][j]=0;
else
e[i][j]=inf;
}
}
}
void floyd()
{
int i,j,k;
for(k=0;k<n;k++)
{
for(i=0;i<n;i++)
{
if(e[i][k]!=inf)
{
for(j=0;j<n;j++)
{
if(e[i][j]>e[i][k]+e[k][j])
e[i][j]=e[i][k]+e[k][j];
}
}
}
}
}
int main()
{
int i,j,u,v,w,s,t;
while(~scanf("%d%d",&n,&m))
{
init();
for(i=0;i<m;i++)
{
cin>>u>>v>>w;
e[u][v]=min(e[u][v],w);//注意!!!
e[v][u]=e[u][v];
}
floyd();
cin>>s>>t;
if(e[s][t]!=inf)
cout<<e[s][t]<<endl;
else
cout<<"-1"<<endl;
}
return 0;
}
dijkstra 代码如下:
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int inf=999999;
int e[1111][1111],visit[1111],dis[1111];
int n,m;
void init()
{
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
if(i==j)
e[i][j]=0;
else
e[i][j]=inf;
}
}
}
void dijkstra(int s)
{
int i,j,u,v;
for(i=0;i<n;i++)
{
dis[i]=e[s][i];
}
//dis[s]=0;
memset(visit,0,sizeof(visit));
visit[s]=1;
for(i=0;i<n-1;i++)
{
int minn=inf;
for(j=0;j<n;j++)
{
if(!visit[j]&&dis[j]<minn)
{
minn=dis[j];
u=j;
}
}
visit[u]=1;
for(v=0;v<n;v++)
{
if(!visit[v]&&dis[v]>dis[u]+e[u][v])
dis[v]=dis[u]+e[u][v];
}
}
}
int main()
{
int u,v,w,i,s,t;
while(~scanf("%d%d",&n,&m))
{
init();
for(i=0;i<m;i++)
{
cin>>u>>v>>w;
e[u][v]=min(e[u][v],w);
e[v][u]=e[u][v];
}
cin>>s>>t;
dijkstra(s);
if(dis[t]!=inf)
{
cout<<dis[t]<<endl;
}
else
cout<<"-1"<<endl;
}
}