题目链接:http://acm.ocrosoft.com/problem.php?id=3509
题目描述
16世纪法国外交家Blaise de Vigenère设计了一种多表密码加密算法——Vigenère密码。Vigenère 密码的加密解密算法简单易用,且破译难度比较高,曾在美国南北战争中为南军所广泛使用。
在密码学中,我们称需要加密的信息为明文,用M表示;称加密后的信息为密文,用C表示;而密钥是一种参数,是将明文转换为密文或将密文转换为明文的算法中输入的数据,记为k。在Vigenère密码中,密钥k是一个字母串,k=k1k2...kn。当明文M=m1m2...mn时,得到的密文C=c1c2...cn,其中ci=mi®ki,运算®的规则如下表所示:
Vigenère加密在操作时需要注意:
1. ®运算忽略参与运算的字母的大小写,并保持字母在明文M中的大小写形式;
2. 当明文M的长度大于密钥k的长度时,将密钥k重复使用。
例如,明文M=Helloworld,密钥k=abc时,密文C=Hfnlpyosnd。
输入
每组输入数据共2行。
第一行为一个字符串,表示密钥k,长度不超过100,其中仅包含大小写字母。
第二行为一个字符串,表示经加密后的密文,长度不超过1000,其中仅包含大小写字母。
数据规模:
对于100%的数据,输入的密钥的长度不超过100,输入的密文的长度不超过1000,且都仅包含英文字母。
输出
每组输出共1行,一个字符串,表示输入密钥和密文所对应的明文。
样例输入
CompleteVictory
Yvqgpxaimmklongnzfwpvxmniytm
样例输出
Wherethereisawillthereisaway
将密钥的字符转化为数字 即明文转化为密文所需加上的数字,如密钥为A时, 不变,密钥为B,明文+1转化为密文。
题目中给出密钥、密文,求明文。即明文=密文-密钥,注意通过取模处理结果为负。
#include<bits/stdc++.h>
using namespace std;
char myao[1111],mwen[1111];
int main(){
cin>>myao>>mwen;
int lyao=strlen(myao);
int lwen=strlen(mwen);
int yiw;
char ans;
for(int i=0;i<lwen;i++){
yiw=0;
if(myao[i%lyao]>='a'){
yiw=myao[i%lyao]-'a';
}else{
yiw=myao[i%lyao]-'A';
}
if(mwen[i]>='a'){
ans=(mwen[i]-'a'-yiw+26)%26+'a';
}else{
ans=(mwen[i]-'A'-yiw+26)%26+'A';
}
cout<<ans;
}
cout<<endl;
return 0;
}
#include<bits/stdc++.h>
using namespace std;
char myao[111],mwen[1111],myao1[111],mwen1[1111];
bool vis[1111];
int main(){
cin>>myao>>mwen;
int lenyao=strlen(myao);
int lenwen=strlen(mwen);
for(int i=0;i<lenyao;i++){
if(myao[i]>='a'&&myao[i]<='z'){
myao1[i]=myao[i]-'a';
}else{
myao1[i]=myao[i]-'A';
}
}
for(int i=0;i<lenwen;i++){
if(mwen[i]>='a'&&mwen[i]<='z'){
mwen1[i]=mwen[i]-'a';
}else{
mwen1[i]=mwen[i]-'A';
vis[i]=1;//标记大写
}
}
int cnt=0;
for(int i=0;i<lenwen;i++){
mwen1[i]-=myao1[cnt];
if(mwen1[i]<0){
mwen1[i]+=26;
}
cnt++;
if(cnt>=lenyao){
cnt=0;
}
}
for(int i=0;i<lenwen;i++){
if(vis[i]){
char str1=mwen1[i]+'A';
cout<<str1;
}else{
char str2=mwen1[i]+'a';
cout<<str2;
}
}
cout<<endl;
return 0;
}