题目链接:http://acm.ocrosoft.com/problem.php?id=2758
2758: 判断整除
时间限制: 1 Sec 内存限制: 128 MB提交: 2 解决: 2
[ 提交][ 状态][ 讨论版][命题人: quanxing]
题目描述
一个给定的正整数序列,在每个数之前都插入+号或-号后计算它们的和。比如序列:1、2、4共有8种可能的序列:
(+1) + (+2) + (+4) = 7
(+1) + (+2) + (-4) = -1
(+1) + (-2) + (+4) = 3
(+1) + (-2) + (-4) = -5
(-1) + (+2) + (+4) = 5
(-1) + (+2) + (-4) = -3
(-1) + (-2) + (+4) = 1
(-1) + (-2) + (-4) = -7
所有结果中至少有一个可被整数k整除,我们则称此正整数序列可被k整除。例如上述序列可以被3、5、7整除,而不能被2、4、6、8……整除。注意:0、-3、-6、-9……都可以认为是3的倍数。
输入
输入的第一行包含两个数:N(2<N<10000)和k(2<k<100),其中N代表一共有N个数,k代表被除数。第二行给出序列中的N个整数,这些整数的取值范围都0到10000之间(可能重复)。
输出
如果此正整数序列可被k整除,则输出YES,否则输出NO。(注意:都是大写字母)
样例输入
3 2
1 2 4
样例输出
NO
#include<iostream>
using namespace std;
int main(){
int a[10001]={0},n,k;
//f[i][j]表示前i个数计算能得到余数是j的情况能不能达到。
bool f[10001][101]={0};
cin>>n>>k;
for (int i=1;i<=n;i++)
{
cin>>a[i];
a[i]%=k;//预处理将每个数对k取模
}
//初始化
f[1][a[1]]=true;
for (int i=2;i<=n;i++){
for (int j=0;j<k;j++){
//前i-1个数之和对k取模之后的结果能够为j
if (f[i-1][j]){
//第i个数有+、-两种情况。
f[i][(j+a[i])%k]=true;
f[i][(j-a[i]+k)%k]=true;//+k再%k是避免第二个下标出现负数
}
}
}
//前n个数之和对k取模=0即能够整除
if (f[n][0]){
cout<<"YES"<<endl;
}else{
cout<<"NO"<<endl;
}
return 0;
}