zufeoj_判断整除

题目链接:http://acm.ocrosoft.com/problem.php?id=2758


2758: 判断整除

时间限制: 1 Sec   内存限制: 128 MB
提交: 2   解决: 2
[ 提交][ 状态][ 讨论版][命题人: quanxing]

题目描述

一个给定的正整数序列,在每个数之前都插入+号或-号后计算它们的和。比如序列:1、2、4共有8种可能的序列:

(+1) + (+2) + (+4) = 7

(+1) + (+2) + (-4) = -1

(+1) + (-2) + (+4) = 3

(+1) + (-2) + (-4) = -5

(-1) + (+2) + (+4) = 5

(-1) + (+2) + (-4) = -3

(-1) + (-2) + (+4) = 1

(-1) + (-2) + (-4) = -7

所有结果中至少有一个可被整数k整除,我们则称此正整数序列可被k整除。例如上述序列可以被3、5、7整除,而不能被2、4、6、8……整除。注意:0、-3、-6、-9……都可以认为是3的倍数。

输入

输入的第一行包含两个数:N(2<N<10000)和k(2<k<100),其中N代表一共有N个数,k代表被除数。第二行给出序列中的N个整数,这些整数的取值范围都0到10000之间(可能重复)。


输出

如果此正整数序列可被k整除,则输出YES,否则输出NO。(注意:都是大写字母)


样例输入

3 2
1 2 4

样例输出

NO


#include<iostream>
using namespace std;
int main(){
    int a[10001]={0},n,k;
    //f[i][j]表示前i个数计算能得到余数是j的情况能不能达到。
    bool f[10001][101]={0};
    cin>>n>>k;
    for (int i=1;i<=n;i++)
    {
        cin>>a[i];
        a[i]%=k;//预处理将每个数对k取模 
    }
    //初始化 
    f[1][a[1]]=true;
    for (int i=2;i<=n;i++){
        for (int j=0;j<k;j++){
            //前i-1个数之和对k取模之后的结果能够为j 
            if (f[i-1][j]){
                //第i个数有+、-两种情况。 
                f[i][(j+a[i])%k]=true; 
                f[i][(j-a[i]+k)%k]=true;//+k再%k是避免第二个下标出现负数
            }
        }
    } 
    //前n个数之和对k取模=0即能够整除 
    if (f[n][0]){
        cout<<"YES"<<endl;
    }else{
        cout<<"NO"<<endl;
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值