Pytorch-早停法(early stopping)原理及其代码

PyTorch EarlyStopping 是一个用于在训练过程提前停止模型训练的技术。当模型在训练过程出现过拟合或者性能不再提升时,EarlyStopping 可以帮助我们停止训练,以避免过拟合并节省时间和计算资源。 在 PyTorch ,我们可以通过自定义一个 EarlyStopping 来实现这个功能。以下是一个简单的示例代码: ```python import numpy as np import torch class EarlyStopping: def __init__(self, patience=5, delta=0): self.patience = patience self.delta = delta self.best_loss = np.Inf self.counter = 0 self.early_stop = False def __call__(self, val_loss): if val_loss < self.best_loss - self.delta: self.best_loss = val_loss self.counter = 0 else: self.counter += 1 if self.counter >= self.patience: self.early_stop = True return self.early_stop ``` 在训练过程,我们可以使用 EarlyStopping 来监测验证集的损失值,并在满足停止条件时停止训练。例如: ```python # 创建 EarlyStopping 实例 early_stopping = EarlyStopping(patience=3) for epoch in range(num_epochs): # 训练模型 # 在验证集上计算损失值 val_loss = calculate_validation_loss(model, validation_data) # 检查是否满足停止条件 if early_stopping(val_loss): print("Early stopping") break # 继续训练 ``` 在上述示例,`patience` 参数表示允许验证集损失连续 `patience` 个 epoch 没有下降的次数,`delta` 参数表示损失值必须至少下降 `delta` 才会被认为是有明显改进。如果连续 `patience` 次都没有达到这个改进,训练将被停止。 这就是 PyTorch EarlyStopping 的基本用法,它可以帮助我们更加高效地训练模型,并避免过拟合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值