2020-10-19

信号压缩、插值 处理 笔记

1.等距压缩

对于一组数据等步长压缩(等间隔删除一定的点)

2.平均压缩

平均压缩是一个过程算法,即为动态压缩。举例如下:求平均次数为N的压缩结果,每次数据分别为s1, s2, s3, …, sn。

第1次平均:s = s1/1;

第2次平均:s = (s*1+s2)/2;

第i次平均:s = (s*(i-1)+si)/i;

第n次平均:s = (s*(n-1)+sn)/n;

由于平均压缩为动态过程,所以实现方法有两种:

①多次调用,每次传入当前平均次数和当前信号的数组(本文采用的方法);

②单次调用,一次性传入多个数组(或一个二维数组),自动循环计算。

峰值检测

峰值检测在示波器应用中比较常见,所以就直接贴出来了。这里起始就是找出最值然后抽取保存即可,如每3个取最大值保留。

代码:

close all;
clear,clc;
 
%% 压缩测试
% 原始信号
t =  [ 0.000000  1.000000  2.000000  3.000000  4.000000  5.000000  6.000000  7.000000  8.000000  9.000000  10.000000  11.000000  12.000000  13.000000  14.000000  15.000000  ];
s =  [0.000000  0.841471  0.909297  0.141120  -0.756802  -0.958924  -0.279415  0.656987  0.989358  0.412118  -0.544021  -0.999990  -0.536573  0.420167  0.990607  0.650288 ];
 
 
%% 普通压缩
t1 =  [ 0.000000  2.000000  4.000000  6.000000  8.000000  10.000000  12.000000  14.000000  ];
s1 =  [ 0.000000  0.909297  -0.756802  -0.279415  0.989358  -0.544021  -0.536573  0.990607  ];
 
figure;
plot(t,s,t,s,'bo');
grid on;
hold on;
plot(t1,s1,'r*',t1,s1,'r');
hold off
title('普通压缩');
 
%% 平均压缩
t2 =  [ 0.000000  1.000000  2.000000  3.000000  4.000000  5.000000  6.000000  7.000000  8.000000  9.000000  10.000000  11.000000  12.000000  13.000000  14.000000  15.000000  ];
s2 =  [ 0.000000  0.799397  0.863833  0.134064  -0.718962  -0.910978  -0.265445  0.624137  0.939890  0.391513  -0.516820  -0.949991  -0.509744  0.399159  0.941077  0.617773  ];
 
figure;
plot(t,s,t,s,'bo');
grid on;
hold on;
plot(t2,s2,'mp',t2,s2,'m');
hold off
title('平均压缩');
 
%% 峰值检测
t3 =  [ 0.000000  3.000000  5.000000  6.000000  9.000000  11.000000  12.000000  15.000000  ];
s3 =  [ 0.000000  0.141120  -0.958924  -0.279415  0.412118  -0.999990  -0.536573  0.650288  ];
 
figure;
plot(t,s,t,s,'bo');
grid on;
hold on;
plot(t3,s3,'mh',t3,s3,'m');
hold off
title('峰值检测(最小值)压缩');

插值方法

线性、sinc、三次样条

本文参考及引用自:
https://blog.csdn.net/shengzhadon/article/details/46776543

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值