1376 最长递增子序列的数量(线段树加DP)

博客讨论了一种使用线段树优化动态规划的方法,来解决求解最大长度和数量的递增子序列问题。通过离散化序列,结合线段树的logn查询效率,将时间复杂度降低到nlogn,从而解决了规模为50000的问题。
摘要由CSDN通过智能技术生成

萌萌哒的链接

题解:

题目在求一串序列的最长递增子序列的基础上,再求其数量。看到题目的数的范围,一眼就应该想到先离散。

离散完后,再仔细想想,咦,不是可以用n^2的dp做吗? 对于序列的第i位,其最优子结构为求出值比a[i]小的

且当前最长递增子序列是最大的。然后我们再加个计数就行了?。。。。

事实证明这个不妥,因为题目的序列最大有50000,n^2的算法一秒之内肯定过不了。于是我们想到了一个神奇

的数据结构,线段树。我们可以维护一个长为序列长度的线段树。然后对于序列的第i位,我们可以在logn的基础

上求得答案。 然后这题的时间复杂度就控制在nlogn了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值