承接上文:论文阅读:KCNet:Mining Point Cloud Local Structures by Kernel Correlation and Graph Pooling(上)
简介中有一段话我觉得很重要:
“为了解决上述问题,PointNet ++ [31]建议将一个点集分割成更小的集群,通过一个小的PointNet发送每个集合,并对更高维的特征点集迭代地重复这样的过程,这导致复杂的体系结构减少速度。因此,我们尝试从不同的方向进行探索:是否有任何有效的可学习的本地操作和清晰的几何解释,以帮助直接增强和改进原始的PointNet,同时保持其简单的架构?为了解决这个问题,我们专注于使用两个新操作来改进PointNet,以利用局部几何和特征结构,如图2所示,关于3D点云上的两个经典监督表示学习任务。我们的贡献总结如下:
•我们提出了一个内核关联层来利用局部几何结构,具有清晰的几何解释(见图1和图3)。
•我们提出了一个基于图形的池化层,以利用本地特征结构来增强网络稳健性。
•我们的KCNet使用这两项新操作有效地改善了点云语义学习性能。”
对于KNNG,文中有这样一段话:
“为了进一步将PointNet扩展到本