论文阅读:KCNet:Mining Point Cloud Local Structures by Kernel Correlation and Graph Pooling(下)

KCNet是针对点云局部结构的改进方法,通过内核关联层利用局部几何,借助基于图形的池化层增强网络稳健性。论文中提出的内核关联借鉴了核相关技术,用于测量点集之间的相似性,而k个最近邻图(KNNG)用于构建局部连接性,类似于PointNet++的采样和分组策略。KCNet在不增加复杂性的情况下提升了点云语义学习的性能。
摘要由CSDN通过智能技术生成
承接上文:论文阅读:KCNet:Mining Point Cloud Local Structures by Kernel Correlation and Graph Pooling(上)

简介中有一段话我觉得很重要:
“为了解决上述问题,PointNet ++ [31]建议将一个点集分割成更小的集群,通过一个小的PointNet发送每个集合,并对更高维的特征点集迭代地重复这样的过程,这导致复杂的体系结构减少速度。因此,我们尝试从不同的方向进行探索:是否有任何有效的可学习的本地操作和清晰的几何解释,以帮助直接增强和改进原始的PointNet,同时保持其简单的架构?为了解决这个问题,我们专注于使用两个新操作来改进PointNet,以利用局部几何和特征结构,如图2所示,关于3D点云上的两个经典监督表示学习任务。我们的贡献总结如下:
•我们提出了一个内核关联层来利用局部几何结构,具有清晰的几何解释(见图1和图3)。
•我们提出了一个基于图形的池化层,以利用本地特征结构来增强网络稳健性。
•我们的KCNet使用这两项新操作有效地改善了点云语义学习性能。”

对于KNNG,文中有这样一段话:
“为了进一步将PointNet扩展到本

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值