Task4建模和调参整理

1.概念和作用

此部分利用特征工程得到的数据,尝试用各种模型进行拟合。包括各种模型的比较和各种调参方法的比较。

2.标签数据处理

很多模型假设数据误差项服从正态分布,所以需要对数据进行log(x+1)变换消除标签的长尾效应,使标签接近正态分布。

train_y_ln = np.log(train_y + 1)

标签正态化之前,预测值和真实值之间偏差较大:
变换前预测效果标签正态化之后,预测值和真实值之间偏差明显减小:
变换后预测效果

3.模型比较

3.1 线性模型

(1)线性回归

(2) Ridge回归

在线性回归的基础上加上L1正则化的方法称为Ridge回归。L1正则化是嵌入式特征选择方法中的一种。

(3)Lasso回归

在线性回归的基础上加上L2正则化的方法称为Lasso回归。L2正则化是嵌入式特征选择方法中的一种。
对这几种模型利用五折交叉验证进行训练:

from sklearn.linear_model import LinearRegression
from sklearn.linear_model import Ridge
from sklearn.linear_model import Lasso
models = [LinearRegression(),
          Ridge(),
          Lasso()]
 
result = dict()
for model in models:
    model_name = str(model).split('(')[0]
    scores = cross_val_score(model, X=train_X, y=train_y_ln, verbose=0, cv = 5, scoring=make_scorer(mean_absolute_error))
    result[model_name] = scores
    result = pd.DataFrame(result)
result.index = ['cv' + str(x) for x in range(1, 6)]
    print(result)

对这三种线性模型的方法进行比较,score分数越小模型拟合效果越好,所以这三种线性模型中,线性回归的拟合效果最好。(不知道为什么L2正则化效果这么差= =)
绝对均值误差比较

3.2 非线性模型

(1)决策树模型DecisionTreeRegressor

(2)随机森林模型RandomForestRegressor

(3)Gradient Boosting:在迭代的时候选择梯度下降的方向来保障最后的结果最好

(4)XGBoost模型

(5)LightGBM模型

非线性模型和线性回归的拟合结果比较,发现随机森林模型最为有效
在这里插入图片描述

4.模型调参

以LGBoost算法为例,利用三种调参方法分别调参,找到最优的超参数组合(objective, num_leaves, max_depth)

4.1 贪心算法

分别对LGBoost的objective, num_leaves, max_depth进行调参,调参后误差逐渐下降如下图所示:
在这里插入图片描述

4.2 网格调参

调参后误差由0.155430降到0.15072
在这里插入图片描述

4.3 贝叶斯调参

调参后误差由0.155430降到0.142818
在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值