caffe学习手册
chestnut--
计算机视觉小小菜鸟一枚
邮箱:1678438052@qq.com
展开
-
Ubuntu 16.04 安装caffe(CPU)以及编译问题处理
首先安装caffe安装的过程主要参考了 赵永科的书深度学习21天实战Caffe中的内容。主要步骤如下:sudo apt-get install gitsudo apt-get install libprotobuf-dev libleveldb-dev libopencv-dev libsnappy-devsudo apt-get install libhdf5-serial-dev proto原创 2017-10-02 15:44:10 · 7832 阅读 · 0 评论 -
caffe 利用Python API做分类预测,以及特征的可视化
这里的代码位于 $caffe-root/examples 下,文件名称为00-classification.ipynb,可以在自己的电脑下用jupyter跑一下,加深记忆。导入相关的库# set up Python environment: numpy for numerical routines, and matplotlib for plottingimport numpy as npim原创 2017-10-29 14:34:29 · 911 阅读 · 0 评论 -
caffe的python接口学习:caffemodel中的参数及特征的抽取(转载)
文章转载出处:http://www.cnblogs.com/denny402/p/5686257.html如果用公式 y=f(wx+b)来表示整个运算过程的话,那么w和b就是我们需要训练的东西,w称为权值,在cnn中也可以叫做卷积核(filter),b是偏置项。f是激活函数,有sigmoid、relu等。x就是输入的数据。数据训练完成后,保存的caffemodel里面,实际上就是各层的w和b值。转载 2017-10-23 22:57:56 · 618 阅读 · 0 评论 -
caffe 利用python绘制loss曲线以及accuracy曲线
废话不多说,保存logcaffe我们要绘制曲线必须先把运行log给保存下来,我们将运行所产生的log重定向到文件:./examples/cifar/train_quick.sh >& cifar.log &“>&”表示将所有的标准输出(stdout)和标准错误输出(stderr)都被重定向,“cifar.log”是重定向后log保存的文件,最后的 “&”表示将命令放入后台运行。 观察运行情况:ta原创 2017-11-03 09:48:57 · 2066 阅读 · 0 评论 -
caffe 利用Python API 做数据输入层
caffe (Convolutional Architecture for Fast Feature Embedding)在caffe中,主要使用LMDB提供数据管理,将形形色色的原始数据转换为统一的Key-Value形式存储,便于数据输入层获得这些数据,而且提高了磁盘IO的利用率。 但是,有时我们可以使用python作为网络结构数据的输入层,毕竟python 简单易写。 参考网址:http原创 2017-10-20 14:30:01 · 2255 阅读 · 0 评论 -
caffe利用shell创建train.txt和val.txt做数据输入
原图像数据:首先必须熟悉一下,find,cut,sed 命令的使用。# /usr/bin/env shDATA=examples/images #数据目录echo "Create train.txt..."rm -rf $DATA/train.txtfind $DATA -name *cat.jpg | cut -d '/' -f3 | sed "s/$/ 1/">>$DATA/trai原创 2017-12-26 14:29:36 · 1115 阅读 · 0 评论 -
使用内存精简版caffe运行densenet
有关densenet的相关资料除了查看论文外还可参考博客1以及博客2,本文主要关注densenet的使用。目前有两个版本的densenet网络配置文件分别对应两个版本的caffe:论文所带的caffe代码。此网络结构可直接放到一般版本的caffe中运行,但是不能适应太大的图片尺寸,对cifar10中的32*32的图片可正常运行,但是memorysize仍比其他的网络大很多。适应densenet原创 2018-01-03 09:42:00 · 3396 阅读 · 9 评论 -
caffe 将数据(非图像和图像)转成lmdb格式的数据
使用Python API两个参考地址: Creating an LMDB database in Python Training Multi-Layer Neural Network with Caffe 添加一个我自己使用过得程序,每一个样本是 75*75*3的数组数据,注意,不是图片数据!def load_data_into_lmdb(lmdb_name, features, l原创 2017-11-09 22:57:14 · 944 阅读 · 0 评论