论文阅读——会话推荐综述《A Survey on Session-based Recommender Systems

《A Survey on Session-based Recommender Systems》

在信息过载和数字化经济时代,推荐系统(RSs)在信息消费、服务和决策方面发挥着越来越重要的作用。近年来,基于会话的推荐系统(SBRSs)作为RSs的一种新范式应运而生。与其他RSs(如基于内容的RSs和基于协作过滤的RSs)不同,SBRSs通常对长期但静态的用户偏好进行建模,SBRSs旨在捕获短期但动态的用户偏好,以提供更及时和准确的建议,并对会话的演变敏感尽管如此SBRS已被广泛应用通过研究,既没有统一的SBRS问题陈述,也没有深入描述SBRS的特点和挑战。目前还不清楚SBRS的挑战在多大程度上得到了解决,以及SBRS的总体研究前景如何。本次对SBRS的全面回顾通过深入探讨SBRS实体(例如会话)、行为(例如用户对项目的点击)及其属性(例如会话长度)来解决上述问题。我们提出了SBRS的一般问题陈述,总结了SBRS的各种数据特征和挑战,并定义了一个分类法来对具有代表性的SBRS研究进行分类。最后,我们讨论在这个令人兴奋和充满活力的领域的新的研究机会。

1.引言

推荐系统(Recommender Systems,RSs)已经发展成为一种基本的工具,可以在日常生活、工作、商业运作、学习、娱乐和社会化的几乎每一个方面提供更多的信息、效率和有效的选择和决策。在数字经济日益繁重的时代,他们的角色变得越来越重要,在这个时代,用户必须从大量且快速增长的内容、产品和服务(统一称为数据项)中做出选择。许多遥感研究领域都取得了巨大的成功,如基于内容的RSs[2,71]、基于协同过滤的RSs[21,83]和结合了前两者的混合RSs[7]。

然而,这些RSs倾向于利用所有历史用户项目交互(简称交互,指用户对项目的直接或间接操作,例如,用户对项目的点击列表)[8]来了解每个用户对项目的长期和静态偏好。这样的实践通常与一个潜在的假设相联系,即用户的所有历史交互对于她当前的偏好都是同等重要的。这可能不是现实世界中的现实情况,有两个主要原因。首先,用户对项目的选择不仅取决于其长期历史偏好,还取决于其短期近期偏好和时间敏感的上下文(例如,最近查看或购买的项目)。这种短期偏好嵌入到用户最频繁的交互中[42],这通常只占用户历史交互的一小部分。第二,用户对项目的引用往往是动态的,而不是静态的,这是不断发展的时间。

到了近年来,基于会话的推荐系统(SBRSs)越来越受到人们的关注。与前面提到的RSs不同,SBRSs从消费过程中产生的会话中学习用户的偏好。每个会话由连续时间内同时发生的多个用户项交互组成,例如,在一次事务访问中购买的一篮子产品,通常持续几分钟到几个小时。通过将每个会话作为基本输入单元,SBRSs能够捕获用户最近会话中的短期偏好,以及反映从一个会话到另一个会话的偏好变化的偏好动态,从而更准确、更及时建议本文所说的SBRSs,是指所有以SBRSs为中心的RSs建议当前会话中下一次交互或下一部分会话的会话数据,以及建议下一次会话的RSs(参见第2.2节)。这一定义涵盖了一些研究[33,77]中狭义构思的SBRSs,这些研究建议在当前课程中进行下一次互动就在那里在不同的背景和假设下。

针对不同的应用领域,文献中以不同的术语描述了SBRSs的各种研究。例如,Hidasi等人[34]在匿名会话数据的基础上构建了一个SBRS,通过对每个会话中的交互(例如,单击一个项目或观看一部电影)进行严格的排序来预测下一个要单击的项目或下一个要观看的视频。Hu等人[39]在非匿名会话数据的基础上构建了另一个SBR,没有会话内的顺序假设,以向用户推荐下一个项目购买.京等人[44]设计了一个基于非匿名会话数据的SBRS,在会话中假设下一个音乐或电影的顺序建议。尽管SBRSs广泛存在于各个领域和许多领域相关研究表明,由于SBRSs的描述、设置、假设和应用领域的不同,在SBRSs领域存在着许多不一致之处。没有一个统一的框架可以很好地对它们进行分类,也没有一个统一的SBRSs问题陈述。更重要的是,目前还没有系统地讨论可持续发展战略的独特特征,包括其问题和会议数据、特征带来的研究挑战、研究前景和应对挑战的差距。目前还没有一个系统的分类,所有的代表性和最先进的方法为SBRSs。这些差距限制了该方法的理论发展和实际应用SBRSs.至针对上述重要方面和差距,本文对SBRSs领域进行了全面系统的综述和综述。

•我们提供了一个统一的框架来对SBRSs的研究进行分类,这可以减少SBRSs领域中的混淆和不一致的观点。

•我们的工作首次提出了一个系统的、统一的SBRSs问题陈述,其中SBRSs建立在正式概念的基础上:用户、项目、动作,交互和会话。

•我们全面系统地概述了会话数据的独特特性以及由此带来的SBRSs挑战。据我们所知,这是第一次这样的描述。

•对SBRS方法进行了系统的分类和比较,以提供如何应对挑战以及在SBRS领域取得了哪些进展的总体观点。

•简要介绍了SBRS的每一类方法以及关键的技术细节,以便深入了解SBRS取得的进展。

•最后,讨论了SBRS研究中存在的问题和前景。

2.相关工作

有各种各样的研究,不仅有基于会话的推荐系统SBRSs,而且还有序列的推荐系统(SRSs)[109]。SRS与SBRS密切相关,但又不同于SBRS。即使在SBRSs领域,也有许多不同的子领域,例如,下一次交互(例如,购买项目)推荐、下一次会话(例如,篮子)推荐。因此,文献中存在着各种用不同术语描述的相应的具体作品,包括基于会话的推荐、下一个项目/歌曲推荐、下一个篮子推荐、顺序推荐、基于会话的推荐系统、顺序推荐系统等,尽管它们很相似,这些工作通常适用于不同的场景,具有不同的设置和假设,属于不同的领域,即SBRSs或SRSs,或上述一些子领域。这些表面上相似但实际上不同的作品不仅造成了SBRSs和SRSs之间的混淆,而且在SBRSs领域内也导致了显著的不一致。因此,社会上对SBRSs和SRSs存在着广泛的误解和混淆。下面,我们首先澄清了SBRS和SRSs的概念和区别,然后提供了一个框架来对相关的SBRS研究进行分类,并阐明了本文与相关工作的区别。

2.1 SBRSs vs. SRSs

SBRSs和srs分别建立在会话数据和序列数据上,但它们常常被一些读取器混淆。因此有必要首先明确会话数据和序列数据的区别。会话是具有清晰边界的交互列表,而交互可能是无序的(在无序会话中)[39,107]或有序的(在有序会话中)[34,78]。来自给定用户的会话数据通常由多个边界(即给定会话的开始和结束交互)分隔的多个会话组成,相邻会话之间的时间间隔不统一。序列是具有清晰顺序的历史符号(例如项目ID)列表。来自给定用户的序列数据通常包含单个序列,其中相邻符号之间的时间间隔是一致的[77],并且只有一个边界。边界通常表示它内部的交互或符号之间基于共现的依赖关系[8]。共现基础依赖是SBRSS的基础,尤其是建立在无序会话数据上的依赖关系。有序意味着会话或序列中的交互或符号之间明确的顺序依赖关系。在表1中系统地显示了会话数据和来自某个用户的序列数据之间的差异。

SBRS的目的是通过学习会话内或会话间的依赖关系,预测给定已知部分的会话的未知部分(例如,一个项目或一批项目),或给定历史会话的未来会话(例如,下一个篮子)。这种依赖性通常很大程度上依赖于会话内部交互的同时发生,它们可能是连续的,也可能是非连续的[39]。原则上,SBRS不一定依赖于会话内部的顺序信息,但是对于有序会话,自然存在的顺序依赖性可以用于推荐。相比之下,SRS通过学习历史符号序列之间的顺序依赖关系来预测给定序列的连续符号。一些调查论文特别关注rss,包括序列感知推荐系统[77]、序列推荐深度学习[23]和序列推荐系统[109]。在本次调查中,我们特别关注SBRSs领域,强调会话数据的独特特性以及它们给SBRSs带来的相应挑战,以及SBRSs的代表性和最先进的方法

2.2 A Framework for SBRSs

关于SBRSs的各种现有工作通常可分为三个子领域,以符合统一的分类框架,以减少上述不一致和混乱。根据推荐任务的不同,分为下一次交互推荐、下一次部分会话推荐和下一次会话推荐。给定会话的已知部分(即已发生的交互),next interaction建议主要通过对会话内依赖关系建模来建议当前会话中下一个可能的交互。它通常简化为预测下一个要交互的项目,例如,要单击或购买的产品。考虑到会话的已知部分,下一部分会话建议旨在通过主要建模会话内的依赖关系来推荐当前会话中的后续交互,例如,在一个篮子中购买所有后续产品。考虑到历史会话,next session recommendation主要通过建模会话间的依赖关系来推荐下一个会话,例如next basket。有时,会话间的依赖关系也被合并到前两个子区域中,以提高推荐性能。表2中给出了这些子区域的系统比较。

2.3 Related Surveys

在SBRSs领域已经进行了许多研究。然而,据我们所知,有许多全面和系统的审查,以塑造这个充满活力的领域,并定位现有的工作以及目前的进展。虽然有一些工作试图对现有SBRS算法的性能进行综合评价和比较,但我们还没有找到系统地将这一研究领域形式化的研究,也没有全面分析会话数据的独特性和SBRS所面临的关键挑战。更不用说对当前的努力进行深入的总结,或者对本报告中公开的研究问题进行详细的描述现场。

好几个调查的重点是传统的RSs或新兴的基于深度学习的RSs。Shi等人[87]全面分析了最近提出的基于RSs的协同过滤算法,并讨论了该领域未来的挑战。Lops等人[56]通过总结相应的代表性算法和最新的算法并讨论未来的发展趋势,对基于内容的RSs进行了概述。Burkeet等人[7]调查了杂交RSs的景观。Zhang等人[130]全面回顾了最近在基于深度学习的RSs上的研究成果。此外,还有一些关于SRS的调查。例如,

Quadrana等人[77]从推荐任务、算法和评价等多个方面对序列感知RSs进行了全面调查;Fang等人[23]从算法、影响因素和评价等方面对基于深度学习的序列推荐进行了全面调查;Wang等人[109]简要回顾了该领域的挑战和进展然而,SRSs然而,对SBRSs缺乏广泛的研究。尽管[77]中已经部分讨论了sbrs,但这项工作主要集中在序列感知RSs上,只讨论了基于有序会话数据的sbrs的一小部分工作,而忽略了基于无序会话的sbrs。更重要的是,许多最近的进展还没有被报道。据我们所知,只有两篇正式发表的评论文章(包括一篇简短的评论),外加一份特别关注SBRS的预印本。具体而言,Ludewig等人[58]提供了许多SBRS算法的系统性能比较,包括基于递归神经网络(RNN)的方法、基于因子化Makov链的方法和基于近邻的方法。后来,Ludewig等人[59]比较了四种基于神经网络的方法和五种基于规则学习或最近邻的传统方法的性能,这进一步扩展到SBRS算法的综合实证研究中,其中12种算法方法的推荐性能进行了比较[60]。这些研究虽然侧重于实验的角度,但只涉及了一些方法,没有从理论上进行全面的回顾和分析视角。给定SBRSs的日益普及和潜力以及该领域不断涌现的新研究成果,全面的调查将具有很高的科学价值和实用价值。本次调查旨在对SBRSs的研究现状进行全面的回顾,以弥补这些空白,为SBRSs的进一步发展提供支持。作为第一次尝试,本文系统地探讨了SBRS的领域,重点是问题陈述、挑战分析、进展回顾和未来展望的讨论。

3 SBRS问题陈述

从系统的角度来看SR是一个系统[8,9],它由包括用户在内的多个基本实体组成,项及其行为,例如,用户项交互。这些基本实体和行为构成了作为SBRS核心实体。因此,我们首先介绍了这些实体和行为以及它们的定义和性质,然后基于这些实体和行为定义了SBRS问题他们。这些定义和性质将进一步用于丁苯橡胶的表征和分类等。此外,表中描述了主要符号

3.1用户及其属性

SBRS中的用户是对项目(如产品)进行操作(如单击、购买)并接收推荐结果的主体。设𝑢表示一个用户,每个用户关联一个唯一的ID和一组属性来描述她的属性信息,例如用户的性别,它有多个值,例如男性和女性。女的用户的属性可能会影响她对项目执行的操作,并进一步影响相应的会话。用于例如,一个男孩可能会看更多的动作片,导致更多的动作片在他的观看环节,而一个女孩可能喜欢看更多的爱情故事电影。除了可以明显观察到的显式属性外,一些反映用户内部状态的隐式属性(例如,她的情绪和意图)也可能对她的行为产生重大影响。所有用户一起组成了用户集,即𝑈={𝑢1,𝑢2,…,𝑢| |}。请注意,会话的用户信息可能并不总是可用的,原因有两个:(1)由于隐私保护,用户信息没有被记录;(2)一些用户在与诸如亚马逊网站. 因此,会话将变成匿名的。

3.2项目及其属性

SBRS中的项目是要推荐的实体,例如产品(如书籍)或服务。当然。让我来𝑣表示一个项目,它与一个唯一ID和一组属性相关联,以提供项目的描述信息,例如类别和物品的价格。数据集中的所有项组成项集,即𝑉={𝑣1,𝑣2,…,𝑣|𝑉|},通常,项在不同的域中是不同的。例如,在新闻推荐领域中,一个项目是发布在新闻网站上的新闻文章,例如,关于人工智能的报道父域;在电子商务领域,商品是一种出售的产品,例如耳机亚马逊网站而在服务业中,一个项目是特定的服务,例如,服务商提供的“机器学习”课程科瑟拉(https://www.coursera.org/).

3.3操作及其属性

用户在会话中对项目执行的操作,例如单击项目。让𝑎表示一个动作,它与一个唯一的ID和一组属性相关联,以提供其属性信息,例如动作的类型,并具有多个值,例如单击、查看和购买。

3.4交互及其属性

交互是会话中最基本的单元。让𝑜表示一个交互,它是一个三元元组,由用户𝑢、项目𝑣和𝑢对𝑣采取的动作𝑎组成,即𝑜=〈𝑢、𝑣、𝑎〉。在用户信息不可用的情况下,交互变得匿名,即𝑜=〈𝑣,𝑎〉。此外,在只有一种类型的动作(例如点击)的情况下,交互作用𝑜可以进一步简化为𝑜=〈𝑣〉,即它只包含一个项目。所有的交互共同构成了交互集𝑂

3.5 Session及其它的属性

Session是SBRS中的一个重要实体。设𝑠表示会话,该会话是由一个特定用户在连续时间段内生成的交互的非空有界列表,即,𝑠={𝑜1,𝑜2,…,𝑜| |}。注意,这里我们使用“list”而不是“set”来表示在一个会话中可能存在重复的交互。例如,一个用户在一个会话中购买了同一个项目的拷贝会导致完全相同的交互。每个session都与一组属性相关联,例如𝑠的持续时间,这些属性具有多个相应的值,例如20分钟或40分钟。会话的其他一些重要属性包括会话发生的时间和日期。接下来,我们将讨论会话的五个重要属性,它们可能对SBRSs.

属性1: 会话长度会话的长度定义为init中包含的交互的总数。这是sessions的一个基本性质,sessions作为实验数据的统计指标之一。大多数文献[39107]。不同长度的会话可能会给sbrs带来不同的挑战,从而导致不同的推荐性能。与会话长度相关的会话特征以及构建SBRSs的相应挑战在第4.1.。

属性2:内部特性中进行了详细讨论命令命令会话的内部顺序是指会话内部交互的顺序。在不同的会话中,通常会有不同的顺序柔性,即无顺序柔性、柔性顺序柔性和柔性顺序柔性命令。命令内部顺序的存在导致会话中的顺序依赖性,这些依赖性可用于推荐。第4.2.

属性3:操作详细讨论了与内部顺序相关的会话特征以及构建SBRSs的相应挑战输入.在现实世界中,某些会话只包含一种类型的操作,例如购买,而其他会话可能包含多种类型的操作,例如单击、购买。对不同类型动作的依赖性通常是不同的。例如,在一个会话中一起单击的项目可能是相似的或竞争性的,而在一个会话中一起购买的项目可能是互补的。因此,会话中操作类型的数量决定了会话内依赖关系是同质的(基于单个类型的操作)还是异质的(基于多类型的操作),这对于准确建议第4.3。详细讨论了与动作类型相关的会话特征以及构建SBRSs的相应挑战信息。

属性4:.用户会话信息主要是指会话中用户的id,有时还包括用户属性。在本文中,用户信息的属性是指用户信息在会话中的可用性。实际上,会话的用户信息在某些情况下是给定的,而在其他情况下是不可用的(参见第3.1节)[34,99,117]。用户信息对于连接同一用户在不同时间的会话起着重要的作用,因此其可用性决定了为特定用户跨多个会话建立长期个性化偏好模型的可能性。在实践中,sbrs最初被提出用于处理那些用户信息不可用的匿名会话[33]。会话特征以及构建sbrs的相应挑战将在第4.4.

属性5:会话中详细讨论结构。这篇论文,会话结构是指由多个层次组成的与会话相关的层次结构[78,106]。例如,属性级别由交互中实体(如用户、项目)的属性组成,交互级别由每个会话中的交互组成,会话级别由来自当前会话的同一用户的多个历史会话组成。交互级别是会话所必需的,而其他级别则取决于特定会话。这是因为用户或项目的属性信息或历史会话信息通常不是在所有会话中都可用数据。通常,会话中包含的级别数决定了可用于建议的信息量。第4.5节详细讨论了与会话结构相关的会话特性以及构建SBRSs所面临的挑战.

3.6 SBRS问题

从系统的角度出发,首先阐述了SBRS的输入、输出和工作机制,然后提出了问题形式化。

SBRS的基本输入是用于推荐的部分已知会话信息[13]。根据具体场景,基本输入有三种情况:(1)当前会话的已知部分(即已发生交互的列表),这是SBRSs的输入,仅为下一次交互(item)或下一次部分会话建议建模会话内依赖关系(c.f.第2.2节);(2) 已知历史会话的列表,这是SBRSs的输入,它主要为下一个会话(如abasket)建议的会话间依赖性建模;(3)前两个的组合,这是SBRSs的输入,为下一个交互建议的会话内和会话间依赖性建模,或者下一次的部分。

现有的SBRSs大多以用户(如果不是匿名的话)、项目和动作的id作为输入,而忽略了它们的属性信息[34,53,97]。只有少数研究[35107]假设属性信息可用,并将其作为输入的一部分。在特定情况下,当前会话或历史会话的输入部分可以是匿名的或非匿名的、有序的或无序的、具有单类型或多类型操作的。根据我们的观察,大多数现有的sbrs假设输入会话是有序的,并且具有单一类型的操作。在SBRS中,输入通常被形式化为会话上下文(本文中也称为上下文),并以此为条件进行推荐执行

输出。SBRS的输出是一个交互或一个交互列表,该交互随后在当前会话中发生,或者在给定的历史会话之后发生的下一个会话(参见第2.2节)。在SBRS中,会话的用户信息要么不可用,因此不可预测(在匿名会话中),要么在默认情况下给定(在非匿名会话中),因此通常不需要预测用户信息。因此,输出中的每个交互只包含一个项和对其采取的相应操作[95],例如,要购买或单击的项目。此外,在大多数情况下,如果sbrs构建在单一类型的action sessions上,那么默认情况下只给出一种操作类型,例如购买或单击,因此输出中的每个交互进一步简化为一个项[39,44]。根据具体的子领域,输出有三种情况(参见第2.2节):(1)在下一次交互建议中,输出是一个备选交互(项目)列表[44,95],按每个交互(项目)成为基本事实的可能性排序;(2)在下一次部分会话建议中,输出是完成当前会话的交互作用(项目)列表;以及(3)在下一会话建议中,输出是形成下一会话的互补交互作用(项目)列表[110],例如,购买一篮子互补产品(例如,牛奶、面包),以实现统一的目标(例如,早餐)。在后两种情况下,根据会话是否有序,列表中的交互可以是有序的,也可以是无序的相应地。

工作机制。SBRS的工作机制是首先学习会话内或会话间交互的综合依赖关系,然后利用所学习的依赖关系来指导后续交互或会话的预测,从而完成推荐任务。接下来,我们将在下面的问题中详细说明形式化问题正式化。

问题形式化。那里有许多不同类型的sbrs,具有各自的特点和适用性。本文给出了一种适用于不同sbrs的抽象层次形式化方法。设𝑙={𝑜1,…,𝑜𝑗,…,𝑜𝑛}为𝑛交互作用的列表,每个交互作用由一个项目和对其采取的相应操作组成。重申在基于单一类型动作会话的SBRSs中,每个交互被简化为一个项目,因此交互列表被简化为一个项目列表,也就是说,交互列表={,…,交互列表,…,交互列表}(交互列表∈交互列表),它包含从候选项集𝑉和操作集𝐴派生的所有可能的交互列表。𝑐是输入,即session context,由用于推荐的所有会话信息组成。所有会话上下文一起构成会话上下文集𝐶。设𝑓为效用函数,用于返回给定会话上下文𝑐的候选交互列表𝑙的效用分数。SBRS是通过最大化给定会话上下文条件下的效用分数来选择推荐的交互列表,即效用函数可以指定为多种形式,例如似然、条件概率。在交互列表上使用效用函数来优化整个候选列表,而不是优化单个候选交互(项)。这使得形式化不仅涵盖了上述所有三种SBRSs输出情况,而且还使得从多个方面来描述和评估整个列表成为可能,例如,列表中交互(项目)的新颖性或多样性[77].

4特征和挑战

SBRS是建立在会话数据之上的,不同类型的会话数据往往具有不同的特征,这就给SBRS的构建带来了不同的挑战。类似于理解其他数据驱动研究中的数据特征和挑战[?]深入理解会话数据的内在特征,以及为构建sbrs建模会话数据所面临的挑战,是设计合适的sbrs的基础。因此,在本节中,我们系统地阐述和总结了sessiondata的各种特点以及它们在构建过程中所带来的相应挑战SBRSs.根据对于第3.5节中介绍的每个会话属性,会话可以分为不同的类型。例如,根据“会话长度”属性,会话可以分为长会话、中会话和短会话。接下来,我们首先介绍不同类型的会话,并根据会话的属性进行分类,然后讨论与每种类型会话相关的特征和挑战。

4.1会话长度的特征和挑战

根据会话长度,会话大致可以分为三种类型:长会话、中等会话会话和简短会话

长时间会话。一个长会话包含相对更多的交互,例如,超过10个。一般来说,通过更多的互动,长时间的会话可以为更准确的建议提供更多的上下文信息。然而,由于用户行为的不确定性,一个长会话更可能包含与其中其他交互无关的随机交互[39]。这会带来嘈杂的信息,从而降低推荐的性能[108,109]。因此,建立在长会话基础上的SBRSs面临的第一个挑战是如何有效地减少不相关交互中的噪声信息。此外,长会话中通常嵌入更复杂的依赖关系,例如,会话中彼此相距较远的两个交互之间的长程依赖关系[128],或会话中跨多个交互的高阶依赖关系[109]会议。因此另一个挑战是如何有效地学习复杂的依赖关系以获得更好的推荐性能

中等会话。中等会话通常包含中等数量的交互,例如4到9。根据我们对电子商务行业交易记录生成的会话数据的观察,中间会话是最常见的情况[112]。与长会话和短会话相比,中间会话不太可能包含太多不相关的交互,而它通常包含基于会话的推荐(SBR)所需的上下文信息。尽管相对来说挑战性较小,但在中等会话上构建SBRSs仍然面临一个普遍的挑战,即如何有效地为acc提取相关和准确的上下文信息推荐

简短会话。一个简短的会话由非常有限的交互组成,通常少于4次,这会导致有限的可用信息建议。例如,对于由两个交互组成的匿名会话,唯一可用于推荐第二个交互(项)的上下文信息是会话中的第一个交互。一个极端的情况是推荐会话的第一次交互。因此,建立在短期会话基础上的SBRS面临的挑战是如何有效地利用有限的上下文信息推荐

4.2与内部顺序相关的特征和挑战

根据会话内部的交互是否有顺序,会话可以大致分为无序会话,有序会话和灵活有序会话会话。

无序会话。一个无序会话包含没有任何顺序的交互,也就是说,会话中的交互发生的时间是早是晚没有区别[39]。例如,online shopping会话有时是无序的,因为用户可能会在没有明显顺序的情况下将商品放入购物车。在无序会话中交互之间的依赖关系是基于它们的共现而不是它们的序列,因此通常使用的序列模型是不可靠的适用。比较对于序列依赖,基于共现的依赖通常相对较弱且模糊,更难学习。此外,交互之间大多数基于共现的依赖是集体依赖[94,128],即会话中的多个上下文交互协同导致下一个交互的发生,而下一个交互更难捕获。因此,无序会话面临的挑战是如何有效地学习交互(尤其是集体交互)之间相对较弱和模糊的依赖关系依赖项

有序会话。一个有序会话包含多个具有严格顺序的交互,它们之间通常存在强顺序依赖关系。例如,由一系列由用户创建的在线课程组成的会话通常是有序的,因为必须先学习一些先修课程才能获得后续课程的先验知识。尽管在有序会话中学习强顺序依赖相对容易,但在长顺序会话中有效地学习随时间逐渐衰减的级联长期顺序依赖仍然是一个挑战会话

灵活-有序会话。灵活有序的会话既不是完全无序的,也不是完全有序的,即会话的某些部分是有序的,而其他部分不是[94]。例如,游客依次在机场、酒店、购物中心、酒吧和景点生成一个签入会话。在会话中,机场、酒店和景点实际上是顺序相关的,而购物中心和酒吧是随机插入的,没有任何关联秩序。因此,灵活排序的会话中的复杂依赖关系必须仔细考虑并精确学习,才能获得准确的建议。因此,建立在灵活有序会话上的SBRSs面临的挑战来自于如何有效地学习复杂和混合的依赖关系,即有序交互之间的顺序依赖和无序交互之间的非顺序依赖。

4.3与动作类型相关的特征和挑战

根据会话中包含的动作类型的数量,会话可以分为单类型动作会话和多类型动作会话会话。单类型操作会话。单个类型的操作会话只包含一种类型的操作,例如单击项目,因此只有一种类型的依赖关系来自同一类型的操作,这相对容易理解学习。多类型操作会话。多类型操作会话包括多种类型的操作[49],导致多种类型的交互。例如,在真实的在线购物会话中,用户通常首先单击几个项目进行比较,然后购买一个或多个项目。因此,多类型动作会话中存在复杂的依赖关系[61]。具体来说,依赖性不仅存在于同一类型的交互上(例如,项目的点击),还存在于不同类型的交互上(例如,点击和购买)。因此,建立在多类型动作会话基础上的SBRSs面临的一大挑战是如何有效而准确地学习动作内和动作间的依赖关系以获得准确的推荐。

4.4与用户信息相关的特征和挑战

根据用户信息是否可用,会话可以分为非匿名会话和匿名会话会话。非匿名会话。非匿名会话包含与关联用户信息的非匿名交互,允许同一用户在不同时间生成不同会话的连接。这使得我们能够了解用户的长期偏好以及它在不同领域的演变但是,由于相对较长的时间跨度和偏好动态性,准确地学习多个非匿名会话的个性化长期偏好是一个相当有挑战性的问题。

匿名的会话。在匿名会话,由于缺少连接同一用户生成的多个会话的用户信息,几乎不可能收集当前会话的先前历史会话。因此,只有来自当前会话的上下文信息才能用于建议。因此,在有限的上下文信息中准确地捕捉用户的个性化偏好以提供准确的推荐是一个挑战

4.5会话结构的特点和挑战

根据会话结构的层数,会话可以大致分为单级别会话和多级别会话(参见3.5)。具体来说,交互级别自然存在于任何会话中,因为会话是多个交互的列表,因此单级别会话特别指那些仅包括交互级别的会话。多级会话是指除了交互之外,还包括属性级或/和会话级的会话级别。

单个级别会话。单级别会话通常是由多个交互组成的匿名会话,没有属性信息或来自同一用户的历史会话。在这种情况下,只有单级依赖(即会话内的交互依赖)可用于建议。因此,由于缺乏其他级别的辅助信息,基于单级别会话的SBRS很容易出现冷启动或数据稀疏问题[61]。这就带来了一个挑战,即当只考虑交互依赖时,如何克服冷启动和稀疏问题,从而获得有效和准确的建议可用

多级别会话。多级会话至少包含两个级别的层次结构,即:交互级别加上属性级别和/或会话级别。在这种情况下,每个级别内的依赖关系和跨不同级别的依赖关系都会影响后续的建议。例如,多个项目的类别(attributelevel)可能会影响这些项目是否会在一个会话中一起购买(交互级别)。因此,如何全面了解准确推荐的层内和层间依赖性是建立在多层次会话基础上的sbrs面临的一个关键挑战

4.6特征和挑战总结

在本小节中,我们总结了会话特征和相应的挑战。具体而言,表4中列出了仔细挑选的关于SBRS的代表性和最新研究成果的比较,包括它们的目标会话类型、基本模型和应用领域。回想一下,每种类型的会话都有自己的特点和挑战,因此,表4中的会话类型实际上反映了每项工作针对的sbrs的相应会话特点和挑战。因此,表4从多个角度对现有作品进行了全面的概述。例如,表4左侧的第二行表示[64]中基于关联规则的SBR主要针对灵活有序(FO)、单类型操作(ST)、匿名(A)和单级别(SL)会话,并采用关联规则挖掘方法进行网页推荐。

5 SBR方法的分类和比较

提供了一个综观在应对第4节中介绍的挑战方面取得的进展,我们首先从技术角度对SBRSs方法进行分类,即第5.1节中涉及的方法或模型,然后比较第5.2节

5.1SBRS方法的分类

SBRS方法的分类如图1所示。根据所采用的方法,从文献中确定了三种超类SBRS方法,即常规SBRS方法、最新表示方法和深度神经网络方法。这三个超类可以进一步划分共分为七个类,每个超类包含多个类。具体来说,传统的有三种类:基于模式/规则方法,基于KNN的方法和基于马尔可夫链的方法;潜在表示方法包含两种类别:潜在因素模型和分布式表示;深度神经网络方法包括两种:基本深度神经网络和高级模型。此外,基本深层神经网络包含四个子类,每个子类对应一个基本深层神经网络结构,即递归神经网络、多感知器层(MLP)网络、卷积神经网络和图形神经网络。类似地,高级模型类包含五个子类,而每个子类对应于一种通常用于构建SBRSs的模型,即注意力模型、记忆网络、混合模型、生成模型和强化学习。因此,现有的SBRSs方法分为三个超类、七个类和九个子类。结果得到了SBRS方法的14个原子类,即常规SBRS方法和潜在表示方法的5个原子类,以及深度神经网络方法的9个子类。接下来,首先,在第5.2节中对不同类别的方法进行比较,然后在第6节、第7节和第8节中分别对每个超类别的方法进行审查。

5.2不同类别方法的比较

一般来说,传统的SBRS方法相对简单,直接,易于理解和实施。虽然简单,但在某些情况下,它们是有效的,特别是在那些简单的数据集上,其中会话内或会话之间的依赖性是明显的,并且易于建模和捕获。特别是,在Ludewig等人[59]的一项研究中,基于KNN的方法(例如session KNN)在一些电子商务数据集(包括RETAIL、DIGI1)上的运行时间要少得多,甚至比基于深层神经网络的方法(例如GRU4Rec)具有更高的推荐精度。相比之下,基于深度神经网络的方法通常比较复杂,涉及复杂的多层网络结构,并且经常需要扩展计算。一般认为,它们更能全面地建模和捕获复杂的依赖关系,例如长期或高阶依赖关系,嵌入复杂数据集,例如不平衡或解析数据集,以获得更准确的SBR[130]。近年来,基于深度神经网络的方法的优越性已经被各种工作所证实,例如[34,124,126]。一般来说,基于潜在表征的方法比传统方法复杂一些,但比基于深层神经网络的方法复杂一些。与基于深度神经网络的方法不同,它们通常不涉及深度网络结构,导致相对较低的计算成本。然而,得益于他们的效率和有效的表征学习,他们有时表现得很好。在一些研究[53108]中,基于最新表示法的方法不仅可以优于一些传统方法,例如基于马尔可夫链的方法[80],还可以优于一些基于深层神经网络的方法,例如基于RNN的方法[34]。如第3.6节所述,SBRSs的工作机制是学习综合依赖性,以指导后续建议。因此,学习会话数据中的依赖关系是SBRS的关键任务。此外,回想一下,SBRSs中的大多数挑战都可以抽象出来,以了解嵌入在不同类型会话数据(例如长会话)中的各种类型的依赖关系,例如高阶依赖关系,如第4节所示。因此,为了更好地理解每一类方法如何有利于完成关键计算任务和解决SBRSs领域的主要挑战,表5比较了所有14种原子类方法的依赖类型。例如,表5中的第四行表示基于马尔可夫链的方法主要捕获会话数据中的顺序、短期、一阶和逐点依赖性以供推荐。

6传统的SBRS方法

传统的SBRS方法利用传统的数据挖掘或机器学习技术,为基于会话的建议捕获嵌入会话数据中的依赖项。一般来说,SBRS的传统方法有三类:基于模式/规则挖掘的方法、基于K近邻(KNN)的方法和基于马尔可夫链的方法。

6.1基于模式/规则挖掘的方法

一般来说,SBR有两种基于模式/规则挖掘的方法:(1)基于频繁模式/关联规则挖掘的方法,该方法在与未登录会话的不同交互中挖掘关联规则,以指导后续建议;(2)基于序列模式挖掘的方法,该方法在不同交互中挖掘序列模式与有序会话进行会话或交互的顺序,以指导后续的建议。这类方法只能处理数据集中所有操作都相同的单类型操作会话,因此,给定会话中的每个交互都被简化为一个项目。

6.1.1基于频繁模式/关联规则的挖掘方法。

频繁基于模式/关联规则挖掘的SBRSs主要包括三个步骤:(1)频繁模式或关联规则挖掘,(2)会话匹配(3)建议生成。具体来说,给定一个项目集和相应的会话集,首先,使用EFP树等模式挖掘算法挖掘一组频率模式。然后,给定一个部分会话(例如,一个会话中所选项目的列表),如果一个项目存在,使得最后,如果条件概率(ˆ|ˆ)大于预定义的置信阈值,则将ˆ添加到推荐列表中[64]。除了上述基本框架之外,还有许多变体。例如,为了考虑不同网页的不同重要性,从而推荐更有用的网页,有几种方法[25120]利用网页浏览持续时间对每个网页的重要性进行加权,然后将这种加权并入关联规则挖掘中,建立基于加权关联规则的SBRS。在应用领域方面,除了传统的基于购物篮的产品推荐外,基于频繁模式/关联规则的SBRS也普遍应用于网页推荐[65]、音乐推荐[86],

6.1.2基于序列模式的挖掘方法.

跟踪作为属于这一子类的代表性工作[121],这里我们将介绍一个基于会话级(参见第3.5节)的典型序列模式挖掘SBR,以供下一次会话建议。对于建立在交互层上的基于序列模式的挖掘SBRSs,请参阅[66],以获得下一次交互建议。与基于频繁模式/关联规则的挖掘方法类似,基于序列模式挖掘的SBRSs也包含三个步骤:(1)序列模式挖掘,(2)序列匹配和(3)推荐生成。具体地说,给定一个序列集={119902; 1,2,…,| |},其中={119904; 1,2,…,|是来自同一用户的会话序列,根据时间戳排序,首先,在上挖掘一组序列模式。然后,给定用户的序列(用户的序列),对于任何序列模式,如果𝑠𝑢的最后一个会话𝑠𝑔属于𝑝,即𝑝={𝑠1,𝑠2,…,𝑠𝑔,𝑠𝑟…},则𝑝是此特定建议的相关模式,并且𝑠中的𝑠𝑔后的项与𝑠𝑟中的项一样,是候选项项目。用于每个候选项ˆ𝑣,其支持度是所有相关模式支持度的总和。

除了上述基本框架外,基于序列模式挖掘的SBRSs还有各种扩展。一个典型的例子是利用与用户相关的加权序列模式挖掘进行个性化推荐,其中每个序列根据其与目标用户过去序列的相似性分配一个权重[90]。另一个扩展是通过将序列模式挖掘和协同过滤相结合来构建混合RS,以同时考虑用户的动态个人模式和他们的总体偏好[17,52]。就应用领域而言,基于购物篮的产品推荐[121]和网页推荐[66]是基于序列模式的SBRSs的两个典型应用。

6.2基于K近邻的方法

基于K近邻(KNN)的sbr方法被证明是简单而有效的[58]。原则上,基于aKNN的SBRS首先从会话数据中找出与当前交互或会话最相似的交互或会话。然后,它根据相似度计算每个候选交互的分数,以表明其与当前交互的相关性,作为建议的指导。对于第6.1节第一段中提到的相同原因,每个交互都简化为此类方法中的一个项。根据是否实际计算了项目或会话之间的相似度,基于KNN的SBRSs方法可分为item-KNN和session-KNN.6.2.1项-KNN.给定在当前会话上下文中,基于项目KNN的SBRS建议那些与当前项目最相似的项目作为下一个会话在其他会话中同时出现选择。从技术上讲,每个元素都被编码到一个二进制向量中,其中每个元素指示该项是否在特定会话中出现(设置为“1”)(设置为“0”)。因此,项目之间的相似性可以通过某种相似性度量在其向量上进行计算,如余弦相似性[58]-KNN.给定当前会话上下文𝑐是基于会话KNN的SBRS,它首先计算𝑐与所有其他会话之间的相似性,以找到其𝐾相邻会话的集合𝑁(𝑐),然后根据相似度计算每个候选项的得分:𝑠𝑣w.r.t.𝑐∈𝑁(𝑜𝑟)𝑒(ˆ𝑣)=∑︁𝑠𝑛𝑏∈𝑁(𝑐)𝑠𝑖𝑚(𝑐),𝑠𝑛𝑏)·1𝑠𝑛𝑏(ˆ𝑣)(3)其中𝑠𝑖𝑚是一种相似度量,1𝑠𝑛𝑏(ˆ𝑣)是一个指示函数,如果𝑣𝑛出现在𝑠𝑛和0中,则返回1否则。比较对于item KNN,session KNN考虑整个会话上下文,而不仅仅是会话上下文中的currentitem,因此可以捕获更多的内容更准确的建议。其他类似的工作包括一种改进的会话KNN,它考虑了来自会话的随时可用的序列和时间信息[27],以及一种混合方法,它使用加权组合方案将会话KNN和GRU4Rec(即基于RNN的SBR)结合起来[41]。此外,此外,还提出了一种基于用户会话信息的用户KNN方法,用于下一篮子推荐[37]。

6.3基于马尔可夫链的方法

基于马尔可夫链的SBRS采用马尔可夫链对会话内或会话间的交互转换进行建模,以预测给定会话上下文的下一次交互或会话[85]。根据跃迁概率是基于显式观测还是基于潜空间计算,基于马尔可夫链的方法大致可分为基于基本马尔可夫链的方法和基于潜在马尔可夫嵌入的方法。

6.3.1基于基本马尔可夫链的方法。

基于基本马尔可夫链的SBRS通常包括四个步骤:(1)计算相互作用序列上的转移概率,(2) 预测过渡路径交互,(3)将会话上下文与预测路径匹配,(4)根据匹配结果提出建议[20]。注意,在大多数情况下,这里的交互被简化为项目。到具体地说,马尔可夫链模型定义为一组元组{,𝑃0是𝑆𝑇中每个状态的初始概率。首先,将相互作用𝑜𝑖到𝑜𝑗的一阶跃迁概率定义为

第二,通过使用一阶马尔可夫链模型估计其概率来预测过渡路径,例如{ o1→𝑜2→𝑜3}:𝑃(𝑜1→𝑜2→𝑜3)=𝑃(𝑜1)𝑃(𝑜2 |𝑜1)𝑃(o3|𝑜2),然后,给定由交互序列组成的会话上下文,选择高概率路径作为参考路径。最后,如果会话上下文出现在引用路径中,则在此路径中出现在会话上下文之后的那些项将被放入建议中列表。除了对于上面介绍的基于马尔可夫链的基本sbr,有许多变体。例如,Zhang等人[131]将一阶和二阶马尔可夫模型结合起来,提出了更准确的网页推荐。Le等人[45]开发了一个基于隐马尔可夫模型的概率模型,用于下一步的推荐。Rendle等人[80]将转移概率矩阵分解,以估计相互作用中未观察到的转移

6.3.2基于隐马尔可夫嵌入方法

不同从基本的基于马尔可夫链的SBRSs直接根据显式观测值计算转移概率,基于隐马尔可夫嵌入(LME)的SBRSs首先将马尔可夫链嵌入到欧氏空间中,然后根据它们的欧氏距离计算相互作用之间的转移概率[12]。这样,它们就可以导出不可观测的跃迁,从而解决有限观测数据中的数据稀疏问题。形式上,每个相互作用被表示为多维欧氏空间中的向量,并假定相互作用与欧氏距离负相关。因此,转移路径的概率𝑝𝑎={o1→𝑜2→,…,→𝑜|𝑝𝑎}可以基于马尔可夫模型来定义

o生成个性化推荐,Wu等人[118]提出了一个个性化马尔可夫嵌入(PME)模型,该模型将用户和项目映射到一个欧氏空间,其中用户项目距离和项目项目项目距离反映了相应的成对关系。在此基础上,提出了个性化排序度量嵌入(PRME)算法,首先将每个项目投影到低维欧氏潜空间中,然后利用度量嵌入算法有效地计算马尔可夫链模型中项目间的转换。直观地说,uclidean距离度量了跃迁的概率[24]。

6.4常规SBRS方法的比较

在提供了每类SBRS常规方法的主要思想和关键技术细节之后,我们在本小节中对这些方法进行了比较和总结。具体来说,在表6中,我们比较了三类方法的适用场景,即适用于哪种类型的会话数据、优缺点和典型工作

7SBRSs的潜在表征方法

SBRSs的潜在表征方法首先用浅层模型为会话中的每个交互建立一个低维的潜在表征。学习到的信息表示对这些交互之间的依赖关系进行编码,然后将用于后续基于会话的建议。根据使用的技术,潜在表示方法大致可分为基于潜在因子模型的方法和基于分布式表示的方法

7.1基于潜在因子模型的方法

基于潜在因子模型的SBRSs首先采用因子分解模型,如矩阵因子分解,将交互(项)上观察到的转移矩阵分解为它们的潜在表示,然后利用结果的潜在表示来估计基于会话的后续会话中未观察到的转移建议。至具体来说,首先,可以使用观察到的会话来构建过渡张量|𝑈|×|𝑂|×|𝑂|数据,其中每个值表示在用户𝑢𝑘下从交互𝑜𝑖到𝑜𝑗的转移概率。然后,一般的线性分解模型,例如Tucker分解,用于分解B。B=C𝑜×𝑼×𝑶×𝑖×𝑶𝑗,其中C𝑜是核心张量,𝑼是用户的潜在表示矩阵,而𝑶和𝑶是最后一次交互和当前交互的最新表示矩阵分别到减轻了观测到的稀疏跃迁的负面影响,正则分解[4]的一个特例用于将Eq(7)转换为成对相互作用的建模:ˆ𝑏𝑘,𝑗=<𝒖𝑘,𝒐𝑖>+<𝒐𝑖,𝒐𝑗>+<𝒖𝑘,𝒐𝑗>(8),其中𝒖𝑘,𝒐和𝒐是用户𝑢的潜在表示向量,最后一次交互𝑜𝑖和当前交互𝑜𝑗分别为[80]。在这里,交互通常简化为项目。在除了上述定义的基于潜在因素模型的SBRS,即因式分解的个性化马尔可夫链(FPMC)模型外,还有许多其他变体。例如,Cheng等人[15]将FPMC扩展为FPMC LRMC,增加了一个限制,将用户移动限制在一个局部区域,使其与下一个POI建议的实际世界旅游案例更加一致。提出了一个协因子分解模型CoFactor,将用户-项目交互矩阵和项目-项目共现矩阵联合分解为共享的项目延迟因子,以捕获用户的个人偏好和项目转换模式[51]。其他一些类似的工作[50,54]利用矩阵分解模型来学习偏好从一个位置类别到另一个位置类别的转换,从而提供位置建议。

7.2基于分布式表示的方法

基于分布式表示的SBRS通常通过浅层神经网络结构学习交互作用的分布式表示(通常指定为项目,有时也包含用户),以将每个暗示映射到低维潜在空间。在大多数情况下,浅层神经网络结构类似于自然语言处理领域中的Skip-gram模型[73]或CBOW模型[63]。结果,会话内或会话间的依赖关系被编码到分布式表示中,然后用于基于会话的表示建议。特别是, 浅层神经网络将用户𝑢𝑘和项目𝑣𝑖分别嵌入到一个潜在分布向量中,使用逻辑函数𝛿(·)进行非线性变换[39]:𝒖𝑘=𝛿(𝑾𝑢:,𝑘)(9)𝒗𝑖=𝛿(𝑾𝑣:,𝑖)(10)式中,𝑾𝑢∈R𝑑×|𝑈|和𝑾𝑣∈R𝑑×|𝑉|分别为用户和项目嵌入矩阵,𝑾𝑡的ℎ列对应于用户𝑢𝑘𝑘王先生等人[107]设计了一个浅层网络来嵌入ID同时分析各项目的特征,建立复合项目表示法,解决冷启动项目问题;类似的工作有[99,102]。为了在会话上下文中集中学习不同交互作用的关联度,下一个选择是将注意力机制纳入表征学习过程[108]。在其他相关工作[101,105]中,学习每个篮子的分层表示法,以供下一个篮子建议使用。

7.3基于潜在表示法的比较

在提供BRSS的每类潜在表示法的主要思想和基本技术细节之后,我们对这些方法进行了比较和总结。具体来说,在表7中,我们比较了两类方法的适用场景,即一种方法适用于哪种会话数据、优缺点和典型工作。

8.SBRSs的深度神经网络方法

SBRSs的深度神经网络方法主要利用深度神经网络的强大功能,对复杂的会话内和会话间依赖关系进行建模,以获得推荐。根据所采用的基本框架,深度神经网络方法大致可分为基本的深度神经网络方法和高级模型,前者涉及一种基本的神经网络结构,如递归神经网络(RNN),后者涉及某种高级机制或模型,如注意力模型。

8.1基于深度神经网络的基本方法

根据所使用的网络结构,深度神经网络的基本方法大致可分为基于RNN的方法、基于多层感知器(MLP)的方法、基于卷积神经网络(CNN)的方法和基于图形神经网络(GNN)的方法。

8.1.1神经网络(RNN)

由于其在序列依赖建模方面的固有优势,使得基于RNN的方法在SBRSs的深层神经网络方法中占据主导地位。这是因为假设已经应用于文献中大多数会话数据集中的交互有序。特别地,基于RNN的SBRS首先将每个有序会话上下文建模为会话中的一系列交互上下文。在这样,它将RNN建模上下文的最后一个隐藏状态作为上下文表示。然后,基于RNN的SBRS以上下文表示为输入,预测下一次交互,完成推荐任务。在考虑会话间依赖性的基于RNN的SBRS中,首先以类似的方式学习历史会话序列的表示,然后合并为了推荐。我们介绍一种基于RNN的有代表性的SBR,称为GRU4Rec,它建立在递归单元(GRU)的基础上[34],以RNN为例说明了基于RNN的SBRSs的工作机制。具体地说,RNN是建立在由一系列交互组成的会话上下文模型之上的。首先,在上下文中嵌入交互的时间步长作为RNN的时间步长的输入。然后,RNN单元,即GRU,通过使用更新门从最后一个隐藏状态𝒉𝑡−1和当前候选状态ˆ𝒉𝑡中吸收信息来在𝑡时间步长处更新隐藏状态𝒉𝑡

这样,由|c|交互组成的会话上下文𝑐可以由具有|单元的RNN建模。最后,使用上一时间步的隐藏状态𝒉|𝑐|作为𝒆𝑐的表示,用于预测下一次活动[34]。除了基本GRU4Rec之外,还有许多变体。为了改进GRU4Rec,Tan等人[92]分别采用了通过序列预处理和嵌入缺失的数据扩充来增强训练过程和减少过拟合。Quadrana等人[78]进一步改进了GRU4Rec,提出了一种分层RNN模型,以捕获会话内和会话间的依赖关系,从而获得更可靠的下一项建议。具体来说,设计了一个基于两级GRU的RNN:会话级GRU对每个会话中购买的项目序列进行建模,并为下一个项目生成建议,而用户级GRU对跨会话信息传输进行建模,然后通过初始化会话级GRU的隐藏状态向会话级GRU提供个性化信息。另一个类似的工作是Ruocco等人提出的内部RNN(II-RNN)[81]。在[19]中,作者设计了一个独特的基于用户的GRU模型,该模型结合了用户特征来概括个性化的nextitem推荐。此外,还存在基于基本RNN单元构建的基于RNN的sbrs,例如,动态循环篮子模型(DREAM)[126]使用基于基本RNN单元构建的RNN来学习用户在每个时间步的动态表示,以用于下一篮子建议。

还有其他变体将(1)变分推理纳入RNN中,以处理稀疏会话数据中的不确定性,同时增强模型在大型真实数据集上的可伸缩性,以获得建议[11,18];(2)将项目特征等辅助信息和时间、位置等上下文因素纳入RNN中,以提高RNN的可伸缩性推荐性能[5,35];(3)将时间衰减或注意机制引入RNN,以区分会话内的依赖关系,从而获得更精确的推荐[6,72];(4)传统模型,如因子分解机或邻域模型,以弥补RNN onlymodels的缺点[41,97]。还有其他类似的基于RNN的SBRSs[26,33,44,116].

8.1.2多层感知器(MLP)网络.

MLP-基于会话的方法通常用于学习不同表示形式的优化组合,形成会话上下文的复合表示形式,用于后续的推荐。与RNN不同的是,MLP由于缺乏对序列数据建模的能力,主要适用于无序的会话数据。具体而言,在Wu等人[115]的工作中,MLP层用于连接会话上下文的不同部分的表示,以导出上下文的统一和复合表示(15),其中,𝒆𝑐𝑣分别表示包含“单击”操作的子会话上下文和包含“查看”操作的子会话上下文。𝑾𝑐和𝑾𝑣是相应的权重矩阵,用于将每个表示完全连接到会话的隐藏层MLP.英寸此外,Jannach等人[43]应用MLP学习不同因素的优化组合,如“提醒”,“项目流行度”和“折扣”作为下一个项目的基于会话的复合功能推荐。宋et al.[91]使用MLP层将用户的长期静态参考和短期临时参考结合起来,以做出更准确的下一项建议。

8.1.3卷积神经网络(CNN)。

CNN是另一个很好的选择SBRSs有两个原因:(1)对会话中的交互作用引入了严格的顺序假设,使得模型更具鲁棒性;(2)具有很强的学习会话中某一区域的局部特征和不同区域之间关系的能力,能够有效地捕获嵌入会话数据中的联合级集体依赖关系。原则上,基于CNN的SBRS首先利用过滤和池操作来更好地学习每个会话上下文的信息表示,然后将学习到的表示用于后续建议[127],通过将𝑐中的每个相互作用映射到一个𝑑维的隐向量,然后将所有向量合并到一个矩阵中,可以构造一个嵌入矩阵𝑬∈R𝑑×|𝑐|。之后,在水平卷积层中,通过在𝑬上从上到下滑动𝑥𝑡ℎ滤波器𝑭𝑥以与其水平尺寸相互作用来实现𝑚𝑡ℎ卷积值𝛼𝑥𝑚。然后,通过对进化结果𝜶𝑥=[𝛼𝑥1,𝛼𝑥2,…,𝛼𝑥+1]执行最大池操作来获取来自𝑧过滤器的最终输出𝒆∈R𝑧,以捕获会话上下文中最重要的特征。最后,将𝒆𝑐视为会话上下文𝑐的表示,并用于后续推荐。一些变体包括为SBRS构建的3D CNN模型[96],该模型联合建模序列模式,包括会话数据和来自项目内容特征的项目特征,以及累积长期用户偏好以生成个性化建议的CNN模型[70]。此外,利用时间卷积网络(TCN)对会话内的交互进行建模,以预测下一次交互[124]。

8.1.4图神经网络(Graph Neural Networks,GNN)

近年来,通过在图中引入深度神经网络,GNN在建立嵌入图结构数据中的复杂关系模型方面显示出强大的表达能力数据。到受益于这种力量,一些研究人员已经引入GNN来模拟会话间或会话间的复杂转换,以构建性能更好的sbrs。首先,给定一个包含多个会话的数据集,通过将每个会话映射到图上的一个链,将其转换为一个图。会话中的每个交互𝑜作为相应链中的节点𝑛,在该链中创建边𝑒以连接会话中的每对相邻交互。然后,将构造的图导入GNN,通过将图上的复杂变换编码到嵌入中,学习每个节点(交互)的信息嵌入。最后,这些学习到的嵌入被导入到基于会话的建议的预测模块中。根据GNN的具体模型结构,SBRSs的GNN方法一般可分为三种类:门控图神经网络(GGNN),图卷积网络(GCN)和图注意网络(GAT)SBRSs.

首先,基于GGNN的SBRS,有向图是基于所有历史有序会话构造的,其中每条边的方向表示会话中相邻会话的顺序。然后,GGNN依次处理每个会话图,即每个会话的链(子图),以获得节点𝑛𝑖的嵌入,即对应的交互𝑜𝑖的嵌入。最后,在处理完所有的会话图之后,得到所有交互的嵌入,然后用这些嵌入来构造会话上下文的嵌入,以供推荐。特别地,inGGNN,一个选通递归单元(GRU)被用来通过循环更新嵌入来学习会话图中每个节点的嵌入。具体地说,步骤𝑡的节点𝑛的嵌入(也称为隐藏状态)𝒉𝑡𝑖由其自身及其邻近节点的先前隐藏状态更新,即𝒉(𝑡−1)𝑖和𝒉(𝑡−1)。经过多次迭代直到达到一个稳定的平衡点,以节点𝑛𝑖最后一步的隐藏状态作为其嵌入𝒏𝑖。基于会话的图神经网络推荐(SR-GNN)[117]是将GNN引入SBRSs并取得优异性能的开创性工作,与非GNN方法相比,包括短期注意/记忆优先级模型(STAMP)[53]、神经暗示推荐机(NARM)[47]和基于GRU的RNN方法,命名为GRU4Rec[34]。属于这一流的其他代表性方法包括(1)图形上下文化自我注意网络(GC-SAN)[119],它利用GNN和自我注意机制分别学习局部依赖和远程依赖,用于基于会话的建议,(2)目标注意GNN(TAGNN)[125],它首先学习GNN的项目嵌入,然后针对不同的目标项目注意地激活不同的用户兴趣,基于会话建议。

图表卷积网络SBRSs.

不同来自基于GGNN的SBRSs,基于GCN的SBRSs主要利用pooling操作来整合图中节点𝑛𝑖的邻域节点𝑛𝑗的信息,以帮助更新𝑛𝑖的隐藏状态,如下所示

其中,𝑁(𝑛𝑖)是节点𝑛𝑖的邻域节点集。根据具体场景,可以使用不同的特定池操作,包括平均池和最大池。然后,集成的邻域信息可并入节点𝑛𝑖[113]的隐藏状态的迭代更新中:𝒉𝑡𝑖=𝒉(𝑡−1)𝑖+ˆ𝒉𝑡𝑖(20),当达到稳定平衡时,将节点𝑛𝑖的最后隐藏状态作为其嵌入𝒏𝑖仔细整合用户的历史会话和当前会话,以捕捉用户对基于会话的准确建议的长期和短期偏好[106123]。类似地,设计一个共同关注网络是为了更好地探索用户当前交互与历史会话交互之间的相关性,从而获得更准确的基于会话的建议[13]。需要注意的是,注意模型通常被集成到其他基本方法中,包括编码器-解码器[57]、分布式表示学习[108]、RNN[47]和GNN[75],以增强它们的推荐能力。特别是,在第8.1.4节中引入了注意力增强型GNN,即GAT。利用注意模型的SBRSs的其他代表性方法包括短期注意/记忆优先级(STAMP)模型[53],自注意模型[129]和软注意模型[29]。

8.2.2记忆网络。

基于SBRS的记忆网络引入了一个记忆网络,通过引入外部记忆矩阵,直接捕获会话上下文中的任何交互与下一个交互之间的依赖关系。这种矩阵更明确、更动态地存储和更新分离上下文中每个交互的信息,以便为推荐保留最相关和最重要的信息任务。到具体来说,一个基于SBRS的存储网络主要由两个主要的组成部分:记忆维护交互嵌入的矩阵会话上下文,以及对矩阵执行操作(包括读写)的控制器[14]。假设m是存储最近交互嵌入到中的内存矩阵,其中每列对应于一个交互的嵌入。会话中发生交互并将其添加到后,将相应地更新M,以便将嵌入写入其中来维护最近交互的信息:M←(M,o)(24),其中表示写入操作,它可以指定为各种写入过程之一,包括最近最少使用的访问(LRUA)[82]。在预测过程中,从维护的内存矩阵中仔细读取相关信息,以构建会话上下文的嵌入e:e=(M,o)(25)其中o是要预测的下一个交互的嵌入,并且在读取过程中考虑读取与更相关的信息。读取操作可以指定为多种形式,典型的一种是使用上述注意机制(参见第8.2.1节)从内存中仔细读取信息矩阵输入除了上面介绍的基于基本内存网络的sbr之外,还提出了一些高级的变体,用于更好的建模会话和制作建议。例如,Wang等人[104]提出了两个并行记忆模块,即内部内存编码器(IME)和外部内存编码器(OME),分别对当前会话和邻域会话进行建模,为会话上下文构建更多信息的嵌入。Song等人[89]提出了分层存储网络来同时模拟用户的项目级和特征级偏好,以更好地进行SBR。其他典型的工作包括SBR的短期注意/记忆优先级模型[53],增量SBR的记忆增强神经模型[62].

8.2.3混合模型

基于混合模型的SBR主要建立一个包含多个子模型的复合模型,利用每个子模型的优势,对嵌入会话数据中的各种复杂依赖关系进行综合建模。通常,每个子模型都擅长于建模某种类型的依赖关系,例如低阶或高阶依赖关系。原则上,基于混合模型的SBRS执行两个主要步骤:(1)使用不同的子模型学习不同类型的依赖项,(2)仔细地集成学习的依赖项以获得准确的结果。SBR代表基于混合模型的SBRSs包括神经网络多时程混合模型(M3),它结合了不同类型的编码器,分别捕获会话中的短期和长期依赖关系。对于准确的建议[93],以及混合信道目的路由网络(MCPRN),它使用多个循环网络来建模用户不同购物目的下的会话内依赖关系[112]。

8.2.4生成性模型。

一般来说讲话,基于SBRSs生成模型的方法通过一个精心设计的生成过程生成下一个交互或下一个会话来进行推荐战略。在这样,推荐过程更接近真实世界中用户的网上购物行为,通常一步一步地捡起物品,形成购物篮[111]。具体地说,给定会话上下文𝑐作为先验信息,生成交互(项)列表𝑙以用作推荐列表:𝑙=𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒(26),其中𝑔𝑒𝑛𝑒rate表示生成过程,可指定为多种形式之一,包括概率生成模型[122]。基于代表性生成模型的SBRS包括扩展网[128],其中设计了概率生成模型以生成候选项的概率分布;设计了基于自主性的生成器的意图问题模型[111]生成效用最大的候选会话,以最好地满足用户的购物意图;变分递归模型(VRM),其中指定了会话的随机生成过程[114];变分会话推荐(VASER),它利用贝叶斯推理的非线性概率方法来执行SBR[135].

8.2.5强化学习(RL)。

SBRSs的强化学习方法通常将会话中用户和RS之间的交互建模为马尔可夫决策过程(MDP)。注意,这里的交互特别指的是用户和RS之间的对话。例如,首先,RS向提供反馈的用户推荐一个项目,然后RS根据用户的反馈推荐后续项目,以更好地符合她的偏好。基于RL的SBRS旨在通过推荐试错项目来学习最佳推荐策略,并从用户的反馈中获得对这些项目的强化[134],基于RL的SBRS能够在与用户交互的过程中不断更新策略,直到达到最适合用户动态偏好的最优策略。在优化过程中,考虑了用户期望的长期累积报酬战略。

遵循在Zhao等人[134]的工作中,我们形式化了一个基于RL的基本SBR。首先,以下五个关键概念是在基于RL的模型中定义的SBRS.州空间𝑆𝑎,其中状态𝑠𝑎𝑡={𝑠𝑎1𝑡,…,𝑠𝑎𝑚′𝑡}∈𝑆𝑎定义为用户在时间𝑡之前与之交互的前一个𝑚′项。动作空间𝐴𝑐,其中动作𝑎𝑎={𝑎𝑎1𝑡。。。,𝑎𝑐𝑛′𝑡}∈𝐴𝑐是根据当前状态𝑡在时间𝑡向用户推荐一个𝑛′项目列表。奖励𝑅𝑒:在状态𝑎𝑎𝑡下,RS采取行动𝑎𝑐𝑡后,它会根据用户的意愿立即获得奖励𝑅𝑒𝑒反馈。过渡概率,𝑎𝑐𝑡)定义了当他们采取行动时,状态从𝑠𝑎𝑎𝑡向𝑠𝑎𝑍+1转变的概率。贴现因子𝑑𝑓:𝑑𝑓∈[0,1]定义了我们衡量未来报酬现值时的贴现因子。因此,可以将SBR形式化,以找到一个推荐策略:𝑆𝑎→𝐴𝑐,使给定历史MDP的RS的累积报酬最大化,即(𝑆𝑎、𝐴、𝑅、𝑒、𝑇、𝑑)。第一步是通过将状态𝑠𝑎𝑡映射到权重矩阵𝑾𝑡来计算要在随后的得分函数中使用的特定于状态的权重参数:

第二步是使用得分函数计算每个候选项的得分,然后选择得分最高的项作为推荐.最后一步是计算潜在动作的动作值,即推荐所选项目,判断动作与当前状态是否匹配[134]。通常,使用以下最优作用值函数𝐸∗(𝑠𝑎𝑡,𝑎𝑐𝑡),即最优策略可达到的最大预期收益[133].

随后,通过最大限度地减小地面真实感动作值与被试动作值之间的误差来优化推荐策略行动。典型基于RL的SBRSs研究包括基于深度强化学习的列表式推荐框架(LIRD)[134],该框架学习列表式推荐的推荐策略;一个类似的工作称为DeepPage,用于逐页推荐[133];以及使用Window-for Recommendation(RLWRec)[36]的强化学习,其中提出了一种状态压缩方法,用于捕获播放列表推荐的巨大状态空间。

8.3深度神经网络的方法比较

在介绍了主要思想和关键技术之后,对基于Deep神经网络的方法进行了比较详细介绍了SBRSs的深层神经网络方法,并对这些方法进行了比较和总结。特别是在表8中,我们比较了两类深度神经网络方法,包括九个子类,它们的适用场景、优点、缺点和典型作品

9展望和未来方向

我们的全面回顾揭示了SBRS研究面临的重大挑战和SBRS带来的巨大机遇。在本节中,我们概述了几个有希望的前瞻性研究方向,我们认为这些方向对该领域的进一步发展至关重要。

9.1带有一般用户偏好的会话推荐

SBRS通常忽略用户的长期一般偏好,这些偏好可以很好地捕捉到通过传统的RSs,比如基于RSs的协同过滤。这可能会导致不可靠的建议,因为具有不同一般偏好和消费习惯的用户即使在相同的会话上下文中也可能选择不同的项目。在这种情况下,如何有效地将用户的一般偏好纳入SBRS是一个关键的挑战,我们讨论了一般偏好学习及其在SBRS中的应用这两个主要问题,并勾勒出几个关键的未来研究方向?在这种情况下,假设明确者项目偏好数据(例如,用户项目评级矩阵)可用。一种直观的方法是,首先使用传统的RS方法(如矩阵分解)从显式偏好数据中学习用户的一般偏好,然后将学习到的偏好作为一个指标来微调anSBRS中候选项的排名,例如将用户更喜欢的项目放在推荐列表的前面。另一种方法是在对候选项目进行排名时,将用户的长期总体偏好和短期偏好结合起来。例如,赵等人[132]提出了一个生成性对抗网络(GAN)框架来构建电影推荐的混合模型。该模型利用MF和RNN分别学习用户的长期偏好和短期偏好。然而,解决这个问题的努力仍然是有限的,还需要更多的努力。—如何将用户隐含的一般偏好纳入SBRS?实际上,明确的偏好数据可能并不总是可用的,因为用户可能会或可能不会对他们购买的每件东西提供明确的反馈,例如评级。在这种情况下,可以利用隐含偏好数据,即用户的交易行为数据,包括查看、点击、添加到购物车和购买,来学习用户的隐含一般偏好[31,32]。实际上,这种隐含的偏好数据通常在基于会话的重新编译场景中可用[84]。尽管已有大量的工作[3,74]探讨了如何从传统RSs(如协同过滤)中的隐含偏好数据中学习用户的总体偏好,但SBRS领域的研究仍然有限。因此,如何同时了解用户的隐性总体偏好和短期偏好,并有效地将其整合为准确的SBR是一个具有挑战性的问题,需要付出更多的努力

9.2考虑更多上下文因素的基于会话的推荐

用户做出选择时的内部和外部环境[9]。因此,上下文因素指可能影响用户选择的上下文相关方面,例如天气、季节、位置、时间和最近流行趋势。如Gediminaset al.[1]和Pagano et al.[67]等研究人员所证明的,考虑到这些背景因素可能会对推荐绩效产生巨大影响。在实践中,SBRS可以被看作是一个简化的上下文感知RS,其上下文被简化为会话上下文[97]。尽管上下文信息已经被整合到其他类型的RSs中,包括上下文感知RSs[1,98],但大多数上下文因素在SBRSs中很少被利用。如何将更多的上下文因素整合到SBRSs中?一些著作对此问题提出了初步的解决方案。建议使用上下文RNN(CRNN)将上下文因素(包括不同交互之间的时间间隔和交互发生时一天的时间)纳入基于RNN的SBR中[88]。在几部作品中[40,46],最近的流行趋势,一个用户最近的浏览量。以商品、购物中心有折扣的商品为背景因素进行SBR分析。然而,这些解决方案只是一个起点,为了解决诸如如何收集更多的上下文信息以及如何更有效地整合这些信息以获得更准确的SBR等问题,还需要进行更多的探索。

9.3基于会话的跨域信息推荐(Session-based Recommendations with Cross-domain information)

跨域指多个不同但相关的域[38],例如电影领域和歌曲领域。通常,为了满足用户的需求,用户购买的商品来自多个域,而不是单个域。此外,用户对来自不同域的项目的选择通常是依赖的。例如,爱丽丝看完电影《泰坦尼克号》后,她可能会听电影的主题曲《我的心会继续》。这样一个例子表明,来自不同域的项不仅可能是依赖的,甚至可以形成一个顺序会话,例如{“泰坦尼克号”,“我的心会继续”}。基于此类会话数据的建议很有意思,但相当具有挑战性。这样的建议不仅涵盖了我们日常生活的更多方面,而且还为只考虑一个域时的数据稀疏问题提供了解决方案。另一方面,很难将用户在不同领域的消费项目收集在一起,而且不同领域的项目之间的关系也比单个领域的项目复杂得多有待探讨的开放性问题。—如何从其他领域借鉴知识,使SBR在目标领域受益?当不能跨不同域构建会话时,可以使用目标辅助框架从其他域中获益。具体来说,该框架以提出建议的目标域为主要信息源,其他域为补充信息源。该框架的一个直观实例可以利用转移学习[22,68],将源领域的知识转移到目标领域,帮助完成任务。尽管转移学习在传统的RSs(如协作过滤)中得到了很好的探索[55,69],但在SBRSs中却很少被探索。-如何在多个域上执行SBR?当会话可以从不同的域构建时,就会发生这种情况。与前面提到的目标辅助框架不同的是,在这种情况下,RSs对来自不同域的项目一视同仁,每个域都可以作为目标域进行推荐。这比第一个案例更有趣,也更具挑战性。因此,如何开发先进的模型来有效地捕获不同领域之间复杂和异构的依赖关系[8]以获得更准确的结果需要更多的探索。

9.4基于会话的推荐考虑用户行为模式

基本的会话推荐出了要考虑共现或共现模式外,还需要考虑更多的用户行为模式序列行为模式隐藏在会话数据中,实际上有更多类型的用户行为模式可以利用,以使SBR受益,例如repeat consumption[79]和periodic consumption[37]。这类行为模式在现实世界中并不少见,但却常常被现有的SBRS研究所忽视。如何有效地发现和利用更多类型的用户行为模式来改进SBR?这个问题在实际应用中,特别是在电子商务行业中,具有重要的现实意义,因此需要更多的努力。

9.5基于会话的约束性建议

在一个会话中,项上存在某些类型的底层约束并不少见。例如,在某些情况下,在一个疗程中购买的物品可能不完全相同或相似,相反,它们可以相互补充[133],例如牛奶和面包,形成一个连贯的包装,以满足一个用户的特定目标,例如早餐。在其他情况下,由于用户可以在一个会话中购买多个项目副本。这类约束常常被现有的SBRSs工作所忽略。如何生成一个对它有一些约束的会话来更好地满足用户的购买目标?这是具有挑战性的,但实际关注,只有有限的关注来自社会。一个直接的解决方案是通过使用知识图谱[103]SBRSs.

9.6交互式和基于会话的推荐(特别是在网上购物场景中),将项目之间的一些语义关系结合起来用户和购物平台之间的连续交互过程。例如,用户可以先单击某个项目以启动会话,然后对该项目执行不同的操作,例如,查看该项目、将其添加到购物车或直接跳过是的。是的将这些不同的操作作为来自用户的不同反馈,平台可以相应地调整后续项目的推荐策略。这样的互动过程一直持续到课程结束。尽管这种嵌入会话生成过程中的内在特性对于准确了解用户对精确SBR的动态偏好非常重要,如何有效地模拟用户与交互会话SBR平台之间的连续交互过程?这个问题在SBRSs领域很关键,但很有挑战性。尽管有研究者提出了基于强化学习的方法[136],但研究还处于初级阶段,还需要更多更深入的探索。

9.7会话数据通常在streaming scenario中以增量方式出现。这导致会话数据具有连续、大容量、高速的特性[29]。然而,现有的SBRS研究大多是针对离线和静态数据,这可能与现实世界中的应用场景不符。如何在在线和流媒体场景中有效地了解用户的动态偏好,以提高用户的使用效率?这比基于离线和静态数据的SBRSs具有更大的挑战性,但从实际的角度来看意义更大。只有少数作品试图通过连续查询和更新的非参数存储机制[62]或基于水库的流模型[29]来解决这个问题。要解决这个悬而未决的问题还需要付出更多的努力。

10结论

在这篇论文中,我们对迄今为止最著名的著作进行了系统而广泛的回顾SBRSs。我们提出了一个统一的框架,将该领域的现有工作分为三个子领域,并为SBR提供了一个统一的问题陈述,以减少该领域的一些混乱和不一致。深入分析了会话数据的特点及其给sbrs带来的挑战。我们还为SBRSs现有方法的组织和聚类提出了一个分类方案,并强调了每类方法的一些关键技术细节。此外,我们还讨论了一些最紧迫的未决问题和有希望的方向。SBRS领域的研究方兴未艾,一批新技术、新方法层出不穷。我们希望本次调查能够让读者全面了解这一领域的关键方面、主要挑战、显著进展,并对今后的研究有所启示。

  • 5
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
电子科大《图嵌入推荐系统技术》综述论文,64页pdf422篇文献阐述图嵌入推荐技术进展 推荐系统是一种缓解信息超载问题的关键工具,旨在通过分析观察到的用户-商品关系,从数百万的候选商品中预测出用户喜欢的商品。针对推荐系统存在的稀疏性和冷启动问题,利用侧信息和知识来挖掘隐藏的(间接的)用户-物品关系来丰富推荐的观测信息,近年来被证明是有前景的;而推荐模型在面对高度复杂和大规模的侧信息和知识时的可扩展性在很大程度上决定了推荐模型的性能。为了有效地利用复杂和大规模的数据,图嵌入技术的研究是一个重要的课题。将图嵌入技术用到推荐系统中,可以大大优于传统的直接基于图拓扑分析的推荐实现,近年来得到了广泛的研究。本文从二部图、一般图和知识图谱的嵌入技术出发,系统地回顾了基于图嵌入的推荐方法,提出了基于图嵌入的推荐方法的总体设计思路。此外,将几种有代表性的基于图嵌入的推荐模型与最常用的传统推荐模型进行了仿真比较,结果表明,传统推荐模型在预测隐式用户-物品交互方面总体上优于基于图嵌入的推荐模型。揭示了基于图嵌入的推荐在这些任务中的相对弱点。为了促进未来的研究,本文提出了基于图嵌入的推荐与传统推荐在不同任务中的权衡,以及一些有待解决的问题。
### 回答1: 知识图谱推荐系统调查 知识图谱推荐系统是一种基于知识图谱的推荐系统,它利用知识图谱中的实体、属性和关系来推荐物品。该系统可以通过分析用户的兴趣、行为和偏好来生成个性化推荐。知识图谱推荐系统可以应用于各种领域,如电子商务、社交网络和文本推荐等。目前,该领域的研究重点包括知识图谱的构建、推荐算法的设计和评估方法的研究等。 ### 回答2: 知识图谱推荐系统是一种依靠知识图谱构建的推荐系统,它不仅考虑用户的历史行为和个人喜好,还考虑了物品的属性、关系和语义信息。近年来,知识图谱推荐系统在学术和工业界都受到了广泛关注和研究。 在知识图谱推荐系统中,建立知识图谱是关键步骤之一。知识图谱通常由实体和关系构成,实体可以是物品或用户,关系则可以是它们之间的交互行为、属性描述等。实体和关系之间的语义信息可以通过数据挖掘和自然语言处理等技术自动构建,也可以手工添加和维护。知识图谱的构建,需要结合业务场景和领域知识,通过不断迭代和优化,以获得更好的推荐效果和用户满意度。 知识图谱推荐系统的核心算法是基于知识图谱的推荐算法,主要包括基于图的推荐算法、基于规则的推荐算法、基于深度学习的推荐算法等。这些算法的基本思想是通过利用知识图谱的结构信息和语义信息,对用户和物品进行匹配和推荐,以提高推荐的准确性和个性化水平。 知识图谱推荐系统的应用场景非常广泛,包括电商推荐、新闻推荐、社交网络推荐等。知识图谱推荐系统可以更好地利用物品之间的关联和用户之间的交互,同时可以结合人类的知识和专业判断,提高推荐的可解释性和可靠性。 未来,随着人工智能和大数据技术的不断发展,知识图谱推荐系统将会得到更广泛的应用和深入的研究,同时也面临着更多的挑战,如数据隐私和安全问题、知识图谱的动态维护和更新问题等。要开展更深入的研究和解决这些问题,需要结合各种学科和技术手段,以推动知识图谱推荐系统的发展和应用。 ### 回答3: 知识图谱是一种用来描述各种实体以及它们之间关系的图形化表示工具,近年来,知识图谱被广泛应用于推荐系统中。知识图谱推荐系统在推荐过程中利用知识图谱中的实体和关系信息,可以有效地改进推荐结果的质量和效率。 针对知识图谱推荐系统的开发和应用,近年来已经涌现出了各种基于知识图谱的推荐算法和框架。例如,基于图注意力机制的知识图谱推荐系统可以通过考虑实体之间的直接和间接关系,生成更准确的推荐结果。还有一些基于深度学习的知识图谱推荐算法,如基于RNN的节点属性与图结构编码的方案,已经被证明在准确性和效率方面都有很高的表现。 此外,还有许多研究集中于知识图谱推荐系统的实际应用。例如,在电影推荐领域,研究表明基于知识图谱的推荐系统能够更准确地预测用户对电影的评价和偏好。在旅游推荐领域,基于知识图谱的推荐系统能够根据用户的兴趣和偏好,为用户提供更加个性化的旅游线路规划。 然而,知识图谱推荐系统仍然面临着许多挑战和问题。例如,在实践中,如何有效地构建和管理知识图谱、如何应对数据稀疏性和冷启动等问题,都需要进一步研究和解决。此外,在知识图谱推荐系统中,如何解释预测结果以及保障数据的隐私性等问题也需要考虑。 总之,基于知识图谱的推荐系统是一个具有广泛研究和应用前景的领域。未来的工作应该更加注重实际应用,并进一步解决相关的技术问题,以提高系统的性能和用户体验。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值