《A Survey on Session-based Recommender Systems》
在信息过载和数字化经济时代,推荐系统(RSs)在信息消费、服务和决策方面发挥着越来越重要的作用。近年来,基于会话的推荐系统(SBRSs)作为RSs的一种新范式应运而生。与其他RSs(如基于内容的RSs和基于协作过滤的RSs)不同,SBRSs通常对长期但静态的用户偏好进行建模,SBRSs旨在捕获短期但动态的用户偏好,以提供更及时和准确的建议,并对会话的演变敏感尽管如此SBRS已被广泛应用通过研究,既没有统一的SBRS问题陈述,也没有深入描述SBRS的特点和挑战。目前还不清楚SBRS的挑战在多大程度上得到了解决,以及SBRS的总体研究前景如何。本次对SBRS的全面回顾通过深入探讨SBRS实体(例如会话)、行为(例如用户对项目的点击)及其属性(例如会话长度)来解决上述问题。我们提出了SBRS的一般问题陈述,总结了SBRS的各种数据特征和挑战,并定义了一个分类法来对具有代表性的SBRS研究进行分类。最后,我们讨论在这个令人兴奋和充满活力的领域的新的研究机会。
1.引言
推荐系统(Recommender Systems,RSs)已经发展成为一种基本的工具,可以在日常生活、工作、商业运作、学习、娱乐和社会化的几乎每一个方面提供更多的信息、效率和有效的选择和决策。在数字经济日益繁重的时代,他们的角色变得越来越重要,在这个时代,用户必须从大量且快速增长的内容、产品和服务(统一称为数据项)中做出选择。许多遥感研究领域都取得了巨大的成功,如基于内容的RSs[2,71]、基于协同过滤的RSs[21,83]和结合了前两者的混合RSs[7]。
然而,这些RSs倾向于利用所有历史用户项目交互(简称交互,指用户对项目的直接或间接操作,例如,用户对项目的点击列表)[8]来了解每个用户对项目的长期和静态偏好。这样的实践通常与一个潜在的假设相联系,即用户的所有历史交互对于她当前的偏好都是同等重要的。这可能不是现实世界中的现实情况,有两个主要原因。首先,用户对项目的选择不仅取决于其长期历史偏好,还取决于其短期近期偏好和时间敏感的上下文(例如,最近查看或购买的项目)。这种短期偏好嵌入到用户最频繁的交互中[42],这通常只占用户历史交互的一小部分。第二,用户对项目的引用往往是动态的,而不是静态的,这是不断发展的时间。
到了近年来,基于会话的推荐系统(SBRSs)越来越受到人们的关注。与前面提到的RSs不同,SBRSs从消费过程中产生的会话中学习用户的偏好。每个会话由连续时间内同时发生的多个用户项交互组成,例如,在一次事务访问中购买的一篮子产品,通常持续几分钟到几个小时。通过将每个会话作为基本输入单元,SBRSs能够捕获用户最近会话中的短期偏好,以及反映从一个会话到另一个会话的偏好变化的偏好动态,从而更准确、更及时建议本文所说的SBRSs,是指所有以SBRSs为中心的RSs建议当前会话中下一次交互或下一部分会话的会话数据,以及建议下一次会话的RSs(参见第2.2节)。这一定义涵盖了一些研究[33,77]中狭义构思的SBRSs,这些研究建议在当前课程中进行下一次互动就在那里在不同的背景和假设下。
针对不同的应用领域,文献中以不同的术语描述了SBRSs的各种研究。例如,Hidasi等人[34]在匿名会话数据的基础上构建了一个SBRS,通过对每个会话中的交互(例如,单击一个项目或观看一部电影)进行严格的排序来预测下一个要单击的项目或下一个要观看的视频。Hu等人[39]在非匿名会话数据的基础上构建了另一个SBR,没有会话内的顺序假设,以向用户推荐下一个项目购买.京等人[44]设计了一个基于非匿名会话数据的SBRS,在会话中假设下一个音乐或电影的顺序建议。尽管SBRSs广泛存在于各个领域和许多领域相关研究表明,由于SBRSs的描述、设置、假设和应用领域的不同,在SBRSs领域存在着许多不一致之处。没有一个统一的框架可以很好地对它们进行分类,也没有一个统一的SBRSs问题陈述。更重要的是,目前还没有系统地讨论可持续发展战略的独特特征,包括其问题和会议数据、特征带来的研究挑战、研究前景和应对挑战的差距。目前还没有一个系统的分类,所有的代表性和最先进的方法为SBRSs。这些差距限制了该方法的理论发展和实际应用SBRSs.至针对上述重要方面和差距,本文对SBRSs领域进行了全面系统的综述和综述。
•我们提供了一个统一的框架来对SBRSs的研究进行分类,这可以减少SBRSs领域中的混淆和不一致的观点。
•我们的工作首次提出了一个系统的、统一的SBRSs问题陈述,其中SBRSs建立在正式概念的基础上:用户、项目、动作,交互和会话。
•我们全面系统地概述了会话数据的独特特性以及由此带来的SBRSs挑战。据我们所知,这是第一次这样的描述。
•对SBRS方法进行了系统的分类和比较,以提供如何应对挑战以及在SBRS领域取得了哪些进展的总体观点。
•简要介绍了SBRS的每一类方法以及关键的技术细节,以便深入了解SBRS取得的进展。
•最后,讨论了SBRS研究中存在的问题和前景。
2.相关工作
有各种各样的研究,不仅有基于会话的推荐系统SBRSs,而且还有序列的推荐系统(SRSs)[109]。SRS与SBRS密切相关,但又不同于SBRS。即使在SBRSs领域,也有许多不同的子领域,例如,下一次交互(例如,购买项目)推荐、下一次会话(例如,篮子)推荐。因此,文献中存在着各种用不同术语描述的相应的具体作品,包括基于会话的推荐、下一个项目/歌曲推荐、下一个篮子推荐、顺序推荐、基于会话的推荐系统、顺序推荐系统等,尽管它们很相似,这些工作通常适用于不同的场景,具有不同的设置和假设,属于不同的领域,即SBRSs或SRSs,或上述一些子领域。这些表面上相似但实际上不同的作品不仅造成了SBRSs和SRSs之间的混淆,而且在SBRSs领域内也导致了显著的不一致。因此,社会上对SBRSs和SRSs存在着广泛的误解和混淆。下面,我们首先澄清了SBRS和SRSs的概念和区别,然后提供了一个框架来对相关的SBRS研究进行分类,并阐明了本文与相关工作的区别。
2.1 SBRSs vs. SRSs
SBRSs和srs分别建立在会话数据和序列数据上,但它们常常被一些读取器混淆。因此有必要首先明确会话数据和序列数据的区别。会话是具有清晰边界的交互列表,而交互可能是无序的(在无序会话中)[39,107]或有序的(在有序会话中)[34,78]。来自给定用户的会话数据通常由多个边界(即给定会话的开始和结束交互)分隔的多个会话组成,相邻会话之间的时间间隔不统一。序列是具有清晰顺序的历史符号(例如项目ID)列表。来自给定用户的序列数据通常包含单个序列,其中相邻符号之间的时间间隔是一致的[77],并且只有一个边界。边界通常表示它内部的交互或符号之间基于共现的依赖关系[8]。共现基础依赖是SBRSS的基础,尤其是建立在无序会话数据上的依赖关系。有序意味着会话或序列中的交互或符号之间明确的顺序依赖关系。在表1中系统地显示了会话数据和来自某个用户的序列数据之间的差异。
SBRS的目的是通过学习会话内或会话间的依赖关系,预测给定已知部分的会话的未知部分(例如,一个项目或一批项目),或给定历史会话的未来会话(例如,下一个篮子)。这种依赖性通常很大程度上依赖于会话内部交互的同时发生,它们可能是连续的,也可能是非连续的[39]。原则上,SBRS不一定依赖于会话内部的顺序信息,但是对于有序会话,自然存在的顺序依赖性可以用于推荐。相比之下,SRS通过学习历史符号序列之间的顺序依赖关系来预测给定序列的连续符号。一些调查论文特别关注rss,包括序列感知推荐系统[77]、序列推荐深度学习[23]和序列推荐系统[109]。在本次调查中,我们特别关注SBRSs领域,强调会话数据的独特特性以及它们给SBRSs带来的相应挑战,以及SBRSs的代表性和最先进的方法
2.2 A Framework for SBRSs
关于SBRSs的各种现有工作通常可分为三个子领域,以符合统一的分类框架,以减少上述不一致和混乱。根据推荐任务的不同,分为下一次交互推荐、下一次部分会话推荐和下一次会话推荐。给定会话的已知部分(即已发生的交互),next interaction建议主要通过对会话内依赖关系建模来建议当前会话中下一个可能的交互。它通常简化为预测下一个要交互的项目,例如,要单击或购买的产品。考虑到会话的已知部分,下一部分会话建议旨在通过主要建模会话内的依赖关系来推荐当前会话中的后续交互,例如,在一个篮子中购买所有后续产品。考虑到历史会话,next session recommendation主要通过建模会话间的依赖关系来推荐下一个会话,例如next basket。有时,会话间的依赖关系也被合并到前两个子区域中,以提高推荐性能。表2中给出了这些子区域的系统比较。
2.3 Related Surveys
在SBRSs领域已经进行了许多研究。然而,据我们所知,有许多全面和系统的审查,以塑造这个充满活力的领域,并定位现有的工作以及目前的进展。虽然有一些工作试图对现有SBRS算法的性能进行综合评价和比较,但我们还没有找到系统地将这一研究领域形式化的研究,也没有全面分析会话数据的独特性和SBRS所面临的关键挑战。更不用说对当前的努力进行深入的总结,或者对本报告中公开的研究问题进行详细的描述现场。
好几个调查的重点是传统的RSs或新兴的基于深度学习的RSs。Shi等人[87]全面分析了最近提出的基于RSs的协同过滤算法,并讨论了该领域未来的挑战。Lops等人[56]通过总结相应的代表性算法和最新的算法并讨论未来的发展趋势,对基于内容的RSs进行了概述。Burkeet等人[7]调查了杂交RSs的景观。Zhang等人[130]全面回顾了最近在基于深度学习的RSs上的研究成果。此外,还有一些关于SRS的调查。例如,
Quadrana等人[77]从推荐任务、算法和评价等多个方面对序列感知RSs进行了全面调查;Fang等人[23]从算法、影响因素和评价等方面对基于深度学习的序列推荐进行了全面调查;Wang等人[109]简要回顾了该领域的挑战和进展然而,SRSs然而,对SBRSs缺乏广泛的研究。尽管[77]中已经部分讨论了sbrs,但这项工作主要集中在序列感知RSs上,只讨论了基于有序会话数据的sbrs的一小部分工作,而忽略了基于无序会话的sbrs。更重要的是,许多最近的进展还没有被报道。据我们所知,只有两篇正式发表的评论文章(包括一篇简短的评论),外加一份特别关注SBRS的预印本。具体而言,Ludewig等人[58]提供了许多SBRS算法的系统性能比较,包括基于递归神经网络(RNN)的方法、基于因子化Makov链的方法和基于近邻的方法。后来,Ludewig等人[59]比较了四种基于神经网络的方法和五种基于规则学习或最近邻的传统方法的性能,这进一步扩展到SBRS算法的综合实证研究中,其中12种算法方法的推荐性能进行了比较[60]。这些研究虽然侧重于实验的角度,但只涉及了一些方法,没有从理论上进行全面的回顾和分析视角。给定SBRSs的日益普及和潜力以及该领域不断涌现的新研究成果,全面的调查将具有很高的科学价值和实用价值。本次调查旨在对SBRSs的研究现状进行全面的回顾,以弥补这些空白,为SBRSs的进一步发展提供支持。作为第一次尝试,本文系统地探讨了SBRS的领域,重点是问题陈述、挑战分析、进展回顾和未来展望的讨论。
3 SBRS问题陈述
从系统的角度来看SR是一个系统[8,9],它由包括用户在内的多个基本实体组成,项及其行为,例如,用户项交互。这些基本实体和行为构成了作为SBRS核心实体。因此,我们首先介绍了这些实体和行为以及它们的定义和性质,然后基于这些实体和行为定义了SBRS问题他们。这些定义和性质将进一步用于丁苯橡胶的表征和分类等。此外,表中描述了主要符号
3.1用户及其属性
SBRS中的用户是对项目(如产品)进行操作(如单击、购买)并接收推荐结果的主体。设𝑢表示一个用户,每个用户关联一个唯一的ID和一组属性来描述她的属性信息,例如用户的性别,它有多个值,例如男性和女性。女的用户的属性可能会影响她对项目执行的操作,并进一步影响相应的会话。用于例如,一个男孩可能会看更多的动作片,导致更多的动作片在他的观看环节,而一个女孩可能喜欢看更多的爱情故事电影。除了可以明显观察到的显式属性外,一些反映用户内部状态的隐式属性(例如,她的情绪和意图)也可能对她的行为产生重大影响。所有用户一起组成了用户集,即𝑈={𝑢1,𝑢2,…,𝑢| |}。请注意,会话的用户信息可能并不总是可用的,原因有两个:(1)由于隐私保护,用户信息没有被记录;(2)一些用户在与诸如亚马逊网站. 因此,会话将变成匿名的。
3.2项目及其属性
SBRS中的项目是要推荐的实体,例如产品(如书籍)或服务。当然。让我来𝑣表示一个项目,它与一个唯一ID和一组属性相关联,以提供项目的描述信息,例如类别和物品的价格。数据集中的所有项组成项集,即𝑉={𝑣1,𝑣2,…,𝑣|𝑉|},通常,项在不同的域中是不同的。例如,在新闻推荐领域中,一个项目是发布在新闻网站上的新闻文章,例如,关于人工智能的报道父域;在电子商务领域,商品是一种出售的产品,例如耳机亚马逊网站而在服务业中,一个项目是特定的服务,例如,服务商提供的“机器学习”课程科瑟拉(https://www.coursera.org/).
3.3操作及其属性
用户在会话中对项目执行的操作,例如单击项目。让𝑎表示一个动作,它与一个唯一的ID和一组属性相关联,以提供其属性信息,例如动作的类型,并具有多个值,例如单击、查看和购买。
3.4交互及其属性
交互是会话中最基本的单元。让𝑜表示一个交互,它是一个三元元组,由用户𝑢、项目𝑣和𝑢对𝑣采取的动作𝑎组成,即𝑜=〈𝑢、𝑣、𝑎〉。在用户信息不可用的情况下,交互变得匿名,即𝑜=〈𝑣,𝑎〉。此外,在只有一种类型的动作(例如点击&#x